MakeItFrom.com
Menu (ESC)

380.0 Aluminum vs. S30815 Stainless Steel

380.0 aluminum belongs to the aluminum alloys classification, while S30815 stainless steel belongs to the iron alloys. There are 31 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 380.0 aluminum and the bottom bar is S30815 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 80
190
Elastic (Young's, Tensile) Modulus, GPa 74
200
Elongation at Break, % 3.0
45
Fatigue Strength, MPa 140
320
Poisson's Ratio 0.33
0.28
Shear Modulus, GPa 28
77
Shear Strength, MPa 190
480
Tensile Strength: Ultimate (UTS), MPa 320
680
Tensile Strength: Yield (Proof), MPa 160
350

Thermal Properties

Latent Heat of Fusion, J/g 510
310
Maximum Temperature: Mechanical, °C 170
1020
Melting Completion (Liquidus), °C 590
1400
Melting Onset (Solidus), °C 540
1360
Specific Heat Capacity, J/kg-K 870
490
Thermal Conductivity, W/m-K 100
15
Thermal Expansion, µm/m-K 22
17

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 27
2.0
Electrical Conductivity: Equal Weight (Specific), % IACS 83
2.4

Otherwise Unclassified Properties

Base Metal Price, % relative 10
17
Density, g/cm3 2.9
7.7
Embodied Carbon, kg CO2/kg material 7.5
3.3
Embodied Energy, MJ/kg 140
47
Embodied Water, L/kg 1040
160

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 8.0
260
Resilience: Unit (Modulus of Resilience), kJ/m3 170
310
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 48
25
Strength to Weight: Axial, points 31
25
Strength to Weight: Bending, points 36
22
Thermal Diffusivity, mm2/s 40
4.0
Thermal Shock Resistance, points 14
15

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Aluminum (Al), % 79.6 to 89.5
0
Carbon (C), % 0
0.050 to 0.1
Cerium (Ce), % 0
0.030 to 0.080
Chromium (Cr), % 0
20 to 22
Copper (Cu), % 3.0 to 4.0
0
Iron (Fe), % 0 to 2.0
62.8 to 68.4
Magnesium (Mg), % 0 to 0.1
0
Manganese (Mn), % 0 to 0.5
0 to 0.8
Nickel (Ni), % 0 to 0.5
10 to 12
Nitrogen (N), % 0
0.14 to 0.2
Phosphorus (P), % 0
0 to 0.040
Silicon (Si), % 7.5 to 9.5
1.4 to 2.0
Sulfur (S), % 0
0 to 0.030
Tin (Sn), % 0 to 0.35
0
Zinc (Zn), % 0 to 3.0
0
Residuals, % 0 to 0.5
0