MakeItFrom.com
Menu (ESC)

383.0 Aluminum vs. 1070 Aluminum

Both 383.0 aluminum and 1070 aluminum are aluminum alloys. They have 84% of their average alloy composition in common. There are 29 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown.

For each property being compared, the top bar is 383.0 aluminum and the bottom bar is 1070 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 73
68
Elongation at Break, % 3.5
4.5 to 39
Fatigue Strength, MPa 150
22 to 49
Poisson's Ratio 0.33
0.33
Shear Modulus, GPa 28
26
Tensile Strength: Ultimate (UTS), MPa 280
73 to 140
Tensile Strength: Yield (Proof), MPa 150
17 to 120

Thermal Properties

Latent Heat of Fusion, J/g 540
400
Maximum Temperature: Mechanical, °C 170
170
Melting Completion (Liquidus), °C 580
640
Melting Onset (Solidus), °C 540
640
Specific Heat Capacity, J/kg-K 880
900
Thermal Conductivity, W/m-K 96
230
Thermal Expansion, µm/m-K 21
23

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 23
61
Electrical Conductivity: Equal Weight (Specific), % IACS 74
200

Otherwise Unclassified Properties

Base Metal Price, % relative 10
9.5
Density, g/cm3 2.8
2.7
Embodied Carbon, kg CO2/kg material 7.5
8.3
Embodied Energy, MJ/kg 140
160
Embodied Water, L/kg 1030
1200

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 8.2
4.8 to 21
Resilience: Unit (Modulus of Resilience), kJ/m3 150
2.1 to 110
Stiffness to Weight: Axial, points 15
14
Stiffness to Weight: Bending, points 50
50
Strength to Weight: Axial, points 28
7.5 to 14
Strength to Weight: Bending, points 34
14 to 22
Thermal Diffusivity, mm2/s 39
94
Thermal Shock Resistance, points 13
3.3 to 6.1

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Aluminum (Al), % 79.7 to 88.5
99.7 to 100
Copper (Cu), % 2.0 to 3.0
0 to 0.040
Iron (Fe), % 0 to 1.3
0 to 0.25
Magnesium (Mg), % 0 to 0.1
0 to 0.030
Manganese (Mn), % 0 to 0.5
0 to 0.030
Nickel (Ni), % 0 to 0.3
0
Silicon (Si), % 9.5 to 11.5
0 to 0.2
Tin (Sn), % 0 to 0.15
0
Titanium (Ti), % 0
0 to 0.030
Vanadium (V), % 0
0 to 0.050
Zinc (Zn), % 0 to 3.0
0 to 0.040
Residuals, % 0 to 0.5
0 to 0.030