MakeItFrom.com
Menu (ESC)

383.0 Aluminum vs. EN 1.4855 Stainless Steel

383.0 aluminum belongs to the aluminum alloys classification, while EN 1.4855 stainless steel belongs to the iron alloys. There are 28 material properties with values for both materials. Properties with values for just one material (6, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 383.0 aluminum and the bottom bar is EN 1.4855 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 75
150
Elastic (Young's, Tensile) Modulus, GPa 73
200
Elongation at Break, % 3.5
4.6
Fatigue Strength, MPa 150
120
Poisson's Ratio 0.33
0.28
Shear Modulus, GPa 28
77
Tensile Strength: Ultimate (UTS), MPa 280
500
Tensile Strength: Yield (Proof), MPa 150
250

Thermal Properties

Latent Heat of Fusion, J/g 540
320
Maximum Temperature: Mechanical, °C 170
1050
Melting Completion (Liquidus), °C 580
1400
Melting Onset (Solidus), °C 540
1350
Specific Heat Capacity, J/kg-K 880
480
Thermal Conductivity, W/m-K 96
14
Thermal Expansion, µm/m-K 21
16

Otherwise Unclassified Properties

Base Metal Price, % relative 10
34
Density, g/cm3 2.8
7.8
Embodied Carbon, kg CO2/kg material 7.5
5.9
Embodied Energy, MJ/kg 140
85
Embodied Water, L/kg 1030
200

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 8.2
19
Resilience: Unit (Modulus of Resilience), kJ/m3 150
160
Stiffness to Weight: Axial, points 15
14
Stiffness to Weight: Bending, points 50
25
Strength to Weight: Axial, points 28
18
Strength to Weight: Bending, points 34
18
Thermal Diffusivity, mm2/s 39
3.7
Thermal Shock Resistance, points 13
11

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Aluminum (Al), % 79.7 to 88.5
0
Carbon (C), % 0
0.3 to 0.5
Chromium (Cr), % 0
23 to 25
Copper (Cu), % 2.0 to 3.0
0
Iron (Fe), % 0 to 1.3
42.6 to 51.9
Magnesium (Mg), % 0 to 0.1
0
Manganese (Mn), % 0 to 0.5
0 to 2.0
Molybdenum (Mo), % 0
0 to 0.5
Nickel (Ni), % 0 to 0.3
23 to 25
Niobium (Nb), % 0
0.8 to 1.8
Phosphorus (P), % 0
0 to 0.040
Silicon (Si), % 9.5 to 11.5
1.0 to 2.5
Sulfur (S), % 0
0 to 0.030
Tin (Sn), % 0 to 0.15
0
Zinc (Zn), % 0 to 3.0
0
Residuals, % 0 to 0.5
0