MakeItFrom.com
Menu (ESC)

383.0 Aluminum vs. EN 1.6580 Steel

383.0 aluminum belongs to the aluminum alloys classification, while EN 1.6580 steel belongs to the iron alloys. There are 30 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 383.0 aluminum and the bottom bar is EN 1.6580 steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 75
220 to 350
Elastic (Young's, Tensile) Modulus, GPa 73
190
Elongation at Break, % 3.5
11 to 19
Fatigue Strength, MPa 150
310 to 610
Poisson's Ratio 0.33
0.29
Shear Modulus, GPa 28
73
Tensile Strength: Ultimate (UTS), MPa 280
720 to 1170
Tensile Strength: Yield (Proof), MPa 150
460 to 990

Thermal Properties

Latent Heat of Fusion, J/g 540
250
Maximum Temperature: Mechanical, °C 170
450
Melting Completion (Liquidus), °C 580
1460
Melting Onset (Solidus), °C 540
1420
Specific Heat Capacity, J/kg-K 880
470
Thermal Conductivity, W/m-K 96
40
Thermal Expansion, µm/m-K 21
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 23
7.8
Electrical Conductivity: Equal Weight (Specific), % IACS 74
8.9

Otherwise Unclassified Properties

Base Metal Price, % relative 10
4.3
Density, g/cm3 2.8
7.9
Embodied Carbon, kg CO2/kg material 7.5
1.8
Embodied Energy, MJ/kg 140
23
Embodied Water, L/kg 1030
59

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 8.2
120 to 130
Resilience: Unit (Modulus of Resilience), kJ/m3 150
560 to 2590
Stiffness to Weight: Axial, points 15
13
Stiffness to Weight: Bending, points 50
24
Strength to Weight: Axial, points 28
26 to 41
Strength to Weight: Bending, points 34
23 to 31
Thermal Diffusivity, mm2/s 39
11
Thermal Shock Resistance, points 13
21 to 34

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Aluminum (Al), % 79.7 to 88.5
0
Carbon (C), % 0
0.26 to 0.34
Chromium (Cr), % 0
1.8 to 2.2
Copper (Cu), % 2.0 to 3.0
0
Iron (Fe), % 0 to 1.3
93.7 to 95.5
Magnesium (Mg), % 0 to 0.1
0
Manganese (Mn), % 0 to 0.5
0.3 to 0.6
Molybdenum (Mo), % 0
0.3 to 0.5
Nickel (Ni), % 0 to 0.3
1.8 to 2.2
Phosphorus (P), % 0
0 to 0.035
Silicon (Si), % 9.5 to 11.5
0 to 0.4
Sulfur (S), % 0
0 to 0.035
Tin (Sn), % 0 to 0.15
0
Zinc (Zn), % 0 to 3.0
0
Residuals, % 0 to 0.5
0