MakeItFrom.com
Menu (ESC)

383.0 Aluminum vs. EN 1.7729 Steel

383.0 aluminum belongs to the aluminum alloys classification, while EN 1.7729 steel belongs to the iron alloys. There are 31 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 383.0 aluminum and the bottom bar is EN 1.7729 steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 75
270
Elastic (Young's, Tensile) Modulus, GPa 73
190
Elongation at Break, % 3.5
17
Fatigue Strength, MPa 150
500
Impact Strength: V-Notched Charpy, J 4.0
46
Poisson's Ratio 0.33
0.29
Shear Modulus, GPa 28
73
Tensile Strength: Ultimate (UTS), MPa 280
910
Tensile Strength: Yield (Proof), MPa 150
750

Thermal Properties

Latent Heat of Fusion, J/g 540
250
Maximum Temperature: Mechanical, °C 170
430
Melting Completion (Liquidus), °C 580
1470
Melting Onset (Solidus), °C 540
1430
Specific Heat Capacity, J/kg-K 880
470
Thermal Conductivity, W/m-K 96
40
Thermal Expansion, µm/m-K 21
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 23
7.6
Electrical Conductivity: Equal Weight (Specific), % IACS 74
8.7

Otherwise Unclassified Properties

Base Metal Price, % relative 10
3.8
Density, g/cm3 2.8
7.8
Embodied Carbon, kg CO2/kg material 7.5
3.3
Embodied Energy, MJ/kg 140
49
Embodied Water, L/kg 1030
59

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 8.2
150
Resilience: Unit (Modulus of Resilience), kJ/m3 150
1500
Stiffness to Weight: Axial, points 15
13
Stiffness to Weight: Bending, points 50
24
Strength to Weight: Axial, points 28
32
Strength to Weight: Bending, points 34
27
Thermal Diffusivity, mm2/s 39
11
Thermal Shock Resistance, points 13
27

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Aluminum (Al), % 79.7 to 88.5
0.015 to 0.080
Arsenic (As), % 0
0 to 0.020
Boron (B), % 0
0.0010 to 0.010
Carbon (C), % 0
0.17 to 0.23
Chromium (Cr), % 0
0.9 to 1.2
Copper (Cu), % 2.0 to 3.0
0 to 0.2
Iron (Fe), % 0 to 1.3
94.8 to 97
Magnesium (Mg), % 0 to 0.1
0
Manganese (Mn), % 0 to 0.5
0.35 to 0.75
Molybdenum (Mo), % 0
0.9 to 1.1
Nickel (Ni), % 0 to 0.3
0 to 0.2
Phosphorus (P), % 0
0 to 0.020
Silicon (Si), % 9.5 to 11.5
0 to 0.4
Sulfur (S), % 0
0 to 0.015
Tin (Sn), % 0 to 0.15
0 to 0.020
Titanium (Ti), % 0
0.070 to 0.15
Vanadium (V), % 0
0.6 to 0.8
Zinc (Zn), % 0 to 3.0
0
Residuals, % 0 to 0.5
0