MakeItFrom.com
Menu (ESC)

383.0 Aluminum vs. EN AC-48100 Aluminum

Both 383.0 aluminum and EN AC-48100 aluminum are aluminum alloys. They have a moderately high 91% of their average alloy composition in common. There are 30 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown.

For each property being compared, the top bar is 383.0 aluminum and the bottom bar is EN AC-48100 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 75
100 to 140
Elastic (Young's, Tensile) Modulus, GPa 73
76
Elongation at Break, % 3.5
1.1
Fatigue Strength, MPa 150
120 to 130
Poisson's Ratio 0.33
0.33
Shear Modulus, GPa 28
29
Tensile Strength: Ultimate (UTS), MPa 280
240 to 330
Tensile Strength: Yield (Proof), MPa 150
190 to 300

Thermal Properties

Latent Heat of Fusion, J/g 540
640
Maximum Temperature: Mechanical, °C 170
170
Melting Completion (Liquidus), °C 580
580
Melting Onset (Solidus), °C 540
470
Specific Heat Capacity, J/kg-K 880
880
Thermal Conductivity, W/m-K 96
130
Thermal Expansion, µm/m-K 21
20

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 23
27
Electrical Conductivity: Equal Weight (Specific), % IACS 74
87

Otherwise Unclassified Properties

Base Metal Price, % relative 10
11
Density, g/cm3 2.8
2.8
Embodied Carbon, kg CO2/kg material 7.5
7.3
Embodied Energy, MJ/kg 140
130
Embodied Water, L/kg 1030
940

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 8.2
2.3 to 3.6
Resilience: Unit (Modulus of Resilience), kJ/m3 150
250 to 580
Stiffness to Weight: Axial, points 15
15
Stiffness to Weight: Bending, points 50
51
Strength to Weight: Axial, points 28
24 to 33
Strength to Weight: Bending, points 34
31 to 38
Thermal Diffusivity, mm2/s 39
55
Thermal Shock Resistance, points 13
11 to 16

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Aluminum (Al), % 79.7 to 88.5
72.1 to 79.8
Copper (Cu), % 2.0 to 3.0
4.0 to 5.0
Iron (Fe), % 0 to 1.3
0 to 1.3
Magnesium (Mg), % 0 to 0.1
0.25 to 0.65
Manganese (Mn), % 0 to 0.5
0 to 0.5
Nickel (Ni), % 0 to 0.3
0 to 0.3
Silicon (Si), % 9.5 to 11.5
16 to 18
Tin (Sn), % 0 to 0.15
0 to 0.15
Titanium (Ti), % 0
0 to 0.25
Zinc (Zn), % 0 to 3.0
0 to 1.5
Residuals, % 0 to 0.5
0 to 0.25