MakeItFrom.com
Menu (ESC)

383.0 Aluminum vs. EN AC-51300 Aluminum

Both 383.0 aluminum and EN AC-51300 aluminum are aluminum alloys. Both are furnished in the as-fabricated (no temper or treatment) condition. They have 85% of their average alloy composition in common. There are 30 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown.

For each property being compared, the top bar is 383.0 aluminum and the bottom bar is EN AC-51300 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 75
65
Elastic (Young's, Tensile) Modulus, GPa 73
67
Elongation at Break, % 3.5
3.7
Fatigue Strength, MPa 150
78
Poisson's Ratio 0.33
0.33
Shear Modulus, GPa 28
25
Tensile Strength: Ultimate (UTS), MPa 280
190
Tensile Strength: Yield (Proof), MPa 150
110

Thermal Properties

Latent Heat of Fusion, J/g 540
400
Maximum Temperature: Mechanical, °C 170
170
Melting Completion (Liquidus), °C 580
640
Melting Onset (Solidus), °C 540
600
Specific Heat Capacity, J/kg-K 880
910
Thermal Conductivity, W/m-K 96
110
Thermal Expansion, µm/m-K 21
24

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 23
31
Electrical Conductivity: Equal Weight (Specific), % IACS 74
100

Otherwise Unclassified Properties

Base Metal Price, % relative 10
9.5
Density, g/cm3 2.8
2.7
Embodied Carbon, kg CO2/kg material 7.5
9.1
Embodied Energy, MJ/kg 140
150
Embodied Water, L/kg 1030
1180

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 8.2
6.1
Resilience: Unit (Modulus of Resilience), kJ/m3 150
87
Stiffness to Weight: Axial, points 15
14
Stiffness to Weight: Bending, points 50
51
Strength to Weight: Axial, points 28
20
Strength to Weight: Bending, points 34
28
Thermal Diffusivity, mm2/s 39
45
Thermal Shock Resistance, points 13
8.6

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Aluminum (Al), % 79.7 to 88.5
91.4 to 95.5
Copper (Cu), % 2.0 to 3.0
0 to 0.1
Iron (Fe), % 0 to 1.3
0 to 0.55
Magnesium (Mg), % 0 to 0.1
4.5 to 6.5
Manganese (Mn), % 0 to 0.5
0 to 0.45
Nickel (Ni), % 0 to 0.3
0
Silicon (Si), % 9.5 to 11.5
0 to 0.55
Tin (Sn), % 0 to 0.15
0
Titanium (Ti), % 0
0 to 0.2
Zinc (Zn), % 0 to 3.0
0 to 0.1
Residuals, % 0 to 0.5
0 to 0.15