MakeItFrom.com
Menu (ESC)

383.0 Aluminum vs. Grade 5 Titanium

383.0 aluminum belongs to the aluminum alloys classification, while grade 5 titanium belongs to the titanium alloys. There are 29 material properties with values for both materials. Properties with values for just one material (6, in this case) are not shown.

For each property being compared, the top bar is 383.0 aluminum and the bottom bar is grade 5 titanium.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 73
110
Elongation at Break, % 3.5
8.6 to 11
Fatigue Strength, MPa 150
530 to 630
Poisson's Ratio 0.33
0.32
Shear Modulus, GPa 28
40
Tensile Strength: Ultimate (UTS), MPa 280
1000 to 1190
Tensile Strength: Yield (Proof), MPa 150
910 to 1110

Thermal Properties

Latent Heat of Fusion, J/g 540
410
Maximum Temperature: Mechanical, °C 170
330
Melting Completion (Liquidus), °C 580
1610
Melting Onset (Solidus), °C 540
1650
Specific Heat Capacity, J/kg-K 880
560
Thermal Conductivity, W/m-K 96
6.8
Thermal Expansion, µm/m-K 21
8.9

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 23
1.0
Electrical Conductivity: Equal Weight (Specific), % IACS 74
2.0

Otherwise Unclassified Properties

Base Metal Price, % relative 10
36
Density, g/cm3 2.8
4.4
Embodied Carbon, kg CO2/kg material 7.5
38
Embodied Energy, MJ/kg 140
610
Embodied Water, L/kg 1030
200

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 8.2
100 to 110
Resilience: Unit (Modulus of Resilience), kJ/m3 150
3980 to 5880
Stiffness to Weight: Axial, points 15
13
Stiffness to Weight: Bending, points 50
35
Strength to Weight: Axial, points 28
62 to 75
Strength to Weight: Bending, points 34
50 to 56
Thermal Diffusivity, mm2/s 39
2.7
Thermal Shock Resistance, points 13
76 to 91

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Aluminum (Al), % 79.7 to 88.5
5.5 to 6.8
Carbon (C), % 0
0 to 0.080
Copper (Cu), % 2.0 to 3.0
0
Hydrogen (H), % 0
0 to 0.015
Iron (Fe), % 0 to 1.3
0 to 0.4
Magnesium (Mg), % 0 to 0.1
0
Manganese (Mn), % 0 to 0.5
0
Nickel (Ni), % 0 to 0.3
0
Nitrogen (N), % 0
0 to 0.050
Oxygen (O), % 0
0 to 0.2
Silicon (Si), % 9.5 to 11.5
0
Tin (Sn), % 0 to 0.15
0
Titanium (Ti), % 0
87.4 to 91
Vanadium (V), % 0
3.5 to 4.5
Yttrium (Y), % 0
0 to 0.0050
Zinc (Zn), % 0 to 3.0
0
Residuals, % 0 to 0.5
0 to 0.4