MakeItFrom.com
Menu (ESC)

384.0 Aluminum vs. 4007 Aluminum

Both 384.0 aluminum and 4007 aluminum are aluminum alloys. They have 85% of their average alloy composition in common.

For each property being compared, the top bar is 384.0 aluminum and the bottom bar is 4007 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 85
32 to 44
Elastic (Young's, Tensile) Modulus, GPa 74
71
Elongation at Break, % 2.5
5.1 to 23
Fatigue Strength, MPa 140
46 to 88
Poisson's Ratio 0.33
0.33
Shear Modulus, GPa 28
27
Shear Strength, MPa 200
80 to 90
Tensile Strength: Ultimate (UTS), MPa 330
130 to 160
Tensile Strength: Yield (Proof), MPa 170
50 to 120

Thermal Properties

Latent Heat of Fusion, J/g 550
410
Maximum Temperature: Mechanical, °C 170
170
Melting Completion (Liquidus), °C 580
650
Melting Onset (Solidus), °C 530
590
Specific Heat Capacity, J/kg-K 870
890
Thermal Conductivity, W/m-K 96
170
Thermal Expansion, µm/m-K 21
23

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 22
42
Electrical Conductivity: Equal Weight (Specific), % IACS 69
140

Otherwise Unclassified Properties

Base Metal Price, % relative 11
9.5
Density, g/cm3 2.9
2.8
Embodied Carbon, kg CO2/kg material 7.4
8.1
Embodied Energy, MJ/kg 140
150
Embodied Water, L/kg 1010
1160

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 6.9
7.4 to 23
Resilience: Unit (Modulus of Resilience), kJ/m3 190
18 to 110
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 49
49
Strength to Weight: Axial, points 32
12 to 15
Strength to Weight: Bending, points 37
20 to 23
Thermal Diffusivity, mm2/s 39
67
Thermal Shock Resistance, points 15
5.5 to 6.7

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Aluminum (Al), % 77.3 to 86.5
94.1 to 97.6
Chromium (Cr), % 0
0.050 to 0.25
Cobalt (Co), % 0
0 to 0.050
Copper (Cu), % 3.0 to 4.5
0 to 0.2
Iron (Fe), % 0 to 1.3
0.4 to 1.0
Magnesium (Mg), % 0 to 0.1
0 to 0.2
Manganese (Mn), % 0 to 0.5
0.8 to 1.5
Nickel (Ni), % 0 to 0.5
0.15 to 0.7
Silicon (Si), % 10.5 to 12
1.0 to 1.7
Tin (Sn), % 0 to 0.35
0
Titanium (Ti), % 0
0 to 0.1
Zinc (Zn), % 0 to 3.0
0 to 0.1
Residuals, % 0 to 0.5
0 to 0.15