MakeItFrom.com
Menu (ESC)

384.0 Aluminum vs. CC482K Bronze

384.0 aluminum belongs to the aluminum alloys classification, while CC482K bronze belongs to the copper alloys. There are 29 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 384.0 aluminum and the bottom bar is CC482K bronze.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 85
99
Elastic (Young's, Tensile) Modulus, GPa 74
110
Elongation at Break, % 2.5
5.6
Poisson's Ratio 0.33
0.34
Shear Modulus, GPa 28
40
Tensile Strength: Ultimate (UTS), MPa 330
300
Tensile Strength: Yield (Proof), MPa 170
160

Thermal Properties

Latent Heat of Fusion, J/g 550
190
Maximum Temperature: Mechanical, °C 170
160
Melting Completion (Liquidus), °C 580
980
Melting Onset (Solidus), °C 530
860
Specific Heat Capacity, J/kg-K 870
360
Thermal Conductivity, W/m-K 96
64
Thermal Expansion, µm/m-K 21
18

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 22
10
Electrical Conductivity: Equal Weight (Specific), % IACS 69
10

Otherwise Unclassified Properties

Base Metal Price, % relative 11
36
Density, g/cm3 2.9
8.8
Embodied Carbon, kg CO2/kg material 7.4
3.8
Embodied Energy, MJ/kg 140
62
Embodied Water, L/kg 1010
400

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 6.9
14
Resilience: Unit (Modulus of Resilience), kJ/m3 190
120
Stiffness to Weight: Axial, points 14
6.8
Stiffness to Weight: Bending, points 49
18
Strength to Weight: Axial, points 32
9.5
Strength to Weight: Bending, points 37
11
Thermal Diffusivity, mm2/s 39
20
Thermal Shock Resistance, points 15
11

Alloy Composition

Aluminum (Al), % 77.3 to 86.5
0 to 0.010
Antimony (Sb), % 0
0 to 0.2
Copper (Cu), % 3.0 to 4.5
83.5 to 87
Iron (Fe), % 0 to 1.3
0 to 0.2
Lead (Pb), % 0
0.7 to 2.5
Magnesium (Mg), % 0 to 0.1
0
Manganese (Mn), % 0 to 0.5
0 to 0.2
Nickel (Ni), % 0 to 0.5
0 to 2.0
Phosphorus (P), % 0
0 to 0.4
Silicon (Si), % 10.5 to 12
0 to 0.010
Sulfur (S), % 0
0 to 0.080
Tin (Sn), % 0 to 0.35
10.5 to 12.5
Zinc (Zn), % 0 to 3.0
0 to 2.0
Residuals, % 0 to 0.5
0