MakeItFrom.com
Menu (ESC)

390.0 Aluminum vs. 6014 Aluminum

Both 390.0 aluminum and 6014 aluminum are aluminum alloys. They have 79% of their average alloy composition in common. There are 29 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown.

For each property being compared, the top bar is 390.0 aluminum and the bottom bar is 6014 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 75
69
Elongation at Break, % 1.0
9.1 to 17
Fatigue Strength, MPa 76 to 110
43 to 79
Poisson's Ratio 0.33
0.33
Shear Modulus, GPa 28
26
Tensile Strength: Ultimate (UTS), MPa 280 to 300
160 to 260
Tensile Strength: Yield (Proof), MPa 240 to 270
80 to 200

Thermal Properties

Latent Heat of Fusion, J/g 640
400
Maximum Temperature: Mechanical, °C 170
180
Melting Completion (Liquidus), °C 650
640
Melting Onset (Solidus), °C 560
620
Specific Heat Capacity, J/kg-K 880
900
Thermal Conductivity, W/m-K 130
200
Thermal Expansion, µm/m-K 18
23

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 24 to 25
53
Electrical Conductivity: Equal Weight (Specific), % IACS 79 to 83
180

Otherwise Unclassified Properties

Base Metal Price, % relative 11
9.5
Density, g/cm3 2.7
2.7
Embodied Carbon, kg CO2/kg material 7.3
8.6
Embodied Energy, MJ/kg 130
160
Embodied Water, L/kg 950
1190

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 2.7 to 2.9
22
Resilience: Unit (Modulus of Resilience), kJ/m3 380 to 470
46 to 300
Stiffness to Weight: Axial, points 15
14
Stiffness to Weight: Bending, points 52
50
Strength to Weight: Axial, points 28 to 30
16 to 26
Strength to Weight: Bending, points 35 to 36
24 to 33
Thermal Diffusivity, mm2/s 56
83
Thermal Shock Resistance, points 14 to 15
7.0 to 11

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Aluminum (Al), % 74.5 to 79.6
97.1 to 99.2
Chromium (Cr), % 0
0 to 0.2
Copper (Cu), % 4.0 to 5.0
0 to 0.25
Iron (Fe), % 0 to 1.3
0 to 0.35
Magnesium (Mg), % 0.45 to 0.65
0.4 to 0.8
Manganese (Mn), % 0 to 0.1
0.050 to 0.2
Silicon (Si), % 16 to 18
0.3 to 0.6
Titanium (Ti), % 0 to 0.2
0 to 0.1
Vanadium (V), % 0
0.050 to 0.2
Zinc (Zn), % 0 to 0.1
0 to 0.1
Residuals, % 0 to 0.2
0 to 0.15