MakeItFrom.com
Menu (ESC)

390.0 Aluminum vs. Grade 14 Titanium

390.0 aluminum belongs to the aluminum alloys classification, while grade 14 titanium belongs to the titanium alloys. There are 29 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown.

For each property being compared, the top bar is 390.0 aluminum and the bottom bar is grade 14 titanium.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 75
110
Elongation at Break, % 1.0
23
Fatigue Strength, MPa 76 to 110
220
Poisson's Ratio 0.33
0.32
Shear Modulus, GPa 28
41
Tensile Strength: Ultimate (UTS), MPa 280 to 300
460
Tensile Strength: Yield (Proof), MPa 240 to 270
310

Thermal Properties

Latent Heat of Fusion, J/g 640
420
Maximum Temperature: Mechanical, °C 170
320
Melting Completion (Liquidus), °C 650
1660
Melting Onset (Solidus), °C 560
1610
Specific Heat Capacity, J/kg-K 880
540
Thermal Conductivity, W/m-K 130
21
Thermal Expansion, µm/m-K 18
8.7

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 24 to 25
3.4
Electrical Conductivity: Equal Weight (Specific), % IACS 79 to 83
6.9

Otherwise Unclassified Properties

Base Metal Price, % relative 11
37
Density, g/cm3 2.7
4.5
Embodied Carbon, kg CO2/kg material 7.3
32
Embodied Energy, MJ/kg 130
520
Embodied Water, L/kg 950
210

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 2.7 to 2.9
93
Resilience: Unit (Modulus of Resilience), kJ/m3 380 to 470
450
Stiffness to Weight: Axial, points 15
13
Stiffness to Weight: Bending, points 52
35
Strength to Weight: Axial, points 28 to 30
28
Strength to Weight: Bending, points 35 to 36
29
Thermal Diffusivity, mm2/s 56
8.5
Thermal Shock Resistance, points 14 to 15
35

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Aluminum (Al), % 74.5 to 79.6
0
Carbon (C), % 0
0 to 0.080
Copper (Cu), % 4.0 to 5.0
0
Hydrogen (H), % 0
0 to 0.015
Iron (Fe), % 0 to 1.3
0 to 0.3
Magnesium (Mg), % 0.45 to 0.65
0
Manganese (Mn), % 0 to 0.1
0
Nickel (Ni), % 0
0.4 to 0.6
Nitrogen (N), % 0
0 to 0.030
Oxygen (O), % 0
0 to 0.15
Ruthenium (Ru), % 0
0.040 to 0.060
Silicon (Si), % 16 to 18
0
Titanium (Ti), % 0 to 0.2
98.4 to 99.56
Zinc (Zn), % 0 to 0.1
0
Residuals, % 0 to 0.2
0 to 0.4