MakeItFrom.com
Menu (ESC)

390.0 Aluminum vs. Grade C-3 Titanium

390.0 aluminum belongs to the aluminum alloys classification, while grade C-3 titanium belongs to the titanium alloys. There are 30 material properties with values for both materials. Properties with values for just one material (1, in this case) are not shown.

For each property being compared, the top bar is 390.0 aluminum and the bottom bar is grade C-3 titanium.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 120
200
Elastic (Young's, Tensile) Modulus, GPa 75
110
Elongation at Break, % 1.0
13
Fatigue Strength, MPa 76 to 110
260
Poisson's Ratio 0.33
0.32
Shear Modulus, GPa 28
40
Tensile Strength: Ultimate (UTS), MPa 280 to 300
500
Tensile Strength: Yield (Proof), MPa 240 to 270
430

Thermal Properties

Latent Heat of Fusion, J/g 640
420
Maximum Temperature: Mechanical, °C 170
320
Melting Completion (Liquidus), °C 650
1660
Melting Onset (Solidus), °C 560
1610
Specific Heat Capacity, J/kg-K 880
540
Thermal Conductivity, W/m-K 130
21
Thermal Expansion, µm/m-K 18
8.7

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 24 to 25
3.5
Electrical Conductivity: Equal Weight (Specific), % IACS 79 to 83
6.9

Otherwise Unclassified Properties

Base Metal Price, % relative 11
37
Density, g/cm3 2.7
4.5
Embodied Carbon, kg CO2/kg material 7.3
31
Embodied Energy, MJ/kg 130
510
Embodied Water, L/kg 950
110

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 2.7 to 2.9
65
Resilience: Unit (Modulus of Resilience), kJ/m3 380 to 470
880
Stiffness to Weight: Axial, points 15
13
Stiffness to Weight: Bending, points 52
35
Strength to Weight: Axial, points 28 to 30
31
Strength to Weight: Bending, points 35 to 36
31
Thermal Diffusivity, mm2/s 56
8.5
Thermal Shock Resistance, points 14 to 15
39

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Aluminum (Al), % 74.5 to 79.6
0
Carbon (C), % 0
0 to 0.1
Copper (Cu), % 4.0 to 5.0
0
Hydrogen (H), % 0
0 to 0.015
Iron (Fe), % 0 to 1.3
0 to 0.25
Magnesium (Mg), % 0.45 to 0.65
0
Manganese (Mn), % 0 to 0.1
0
Nickel (Ni), % 0
0 to 0.050
Oxygen (O), % 0
0 to 0.4
Silicon (Si), % 16 to 18
0
Titanium (Ti), % 0 to 0.2
98.8 to 100
Zinc (Zn), % 0 to 0.1
0
Residuals, % 0 to 0.2
0 to 0.4