MakeItFrom.com
Menu (ESC)

390.0 Aluminum vs. Grade C-5 Titanium

390.0 aluminum belongs to the aluminum alloys classification, while grade C-5 titanium belongs to the titanium alloys. There are 30 material properties with values for both materials. Properties with values for just one material (1, in this case) are not shown.

For each property being compared, the top bar is 390.0 aluminum and the bottom bar is grade C-5 titanium.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 120
310
Elastic (Young's, Tensile) Modulus, GPa 75
110
Elongation at Break, % 1.0
6.7
Fatigue Strength, MPa 76 to 110
510
Poisson's Ratio 0.33
0.32
Shear Modulus, GPa 28
40
Tensile Strength: Ultimate (UTS), MPa 280 to 300
1000
Tensile Strength: Yield (Proof), MPa 240 to 270
940

Thermal Properties

Latent Heat of Fusion, J/g 640
410
Maximum Temperature: Mechanical, °C 170
340
Melting Completion (Liquidus), °C 650
1610
Melting Onset (Solidus), °C 560
1560
Specific Heat Capacity, J/kg-K 880
560
Thermal Conductivity, W/m-K 130
7.1
Thermal Expansion, µm/m-K 18
9.6

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 24 to 25
1.0
Electrical Conductivity: Equal Weight (Specific), % IACS 79 to 83
2.0

Otherwise Unclassified Properties

Base Metal Price, % relative 11
36
Density, g/cm3 2.7
4.4
Embodied Carbon, kg CO2/kg material 7.3
38
Embodied Energy, MJ/kg 130
610
Embodied Water, L/kg 950
200

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 2.7 to 2.9
66
Resilience: Unit (Modulus of Resilience), kJ/m3 380 to 470
4200
Stiffness to Weight: Axial, points 15
13
Stiffness to Weight: Bending, points 52
35
Strength to Weight: Axial, points 28 to 30
63
Strength to Weight: Bending, points 35 to 36
50
Thermal Diffusivity, mm2/s 56
2.9
Thermal Shock Resistance, points 14 to 15
71

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Aluminum (Al), % 74.5 to 79.6
5.5 to 6.8
Carbon (C), % 0
0 to 0.1
Copper (Cu), % 4.0 to 5.0
0
Hydrogen (H), % 0
0 to 0.015
Iron (Fe), % 0 to 1.3
0 to 0.4
Magnesium (Mg), % 0.45 to 0.65
0
Manganese (Mn), % 0 to 0.1
0
Nickel (Ni), % 0
0 to 0.050
Oxygen (O), % 0
0 to 0.25
Silicon (Si), % 16 to 18
0
Titanium (Ti), % 0 to 0.2
87.5 to 91
Vanadium (V), % 0
3.5 to 4.5
Zinc (Zn), % 0 to 0.1
0
Residuals, % 0 to 0.2
0 to 0.4