MakeItFrom.com
Menu (ESC)

390.0 Aluminum vs. Titanium 6-6-2

390.0 aluminum belongs to the aluminum alloys classification, while titanium 6-6-2 belongs to the titanium alloys. There are 28 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown.

For each property being compared, the top bar is 390.0 aluminum and the bottom bar is titanium 6-6-2.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 75
120
Elongation at Break, % 1.0
6.7 to 9.0
Fatigue Strength, MPa 76 to 110
590 to 670
Poisson's Ratio 0.33
0.32
Shear Modulus, GPa 28
44
Tensile Strength: Ultimate (UTS), MPa 280 to 300
1140 to 1370
Tensile Strength: Yield (Proof), MPa 240 to 270
1040 to 1230

Thermal Properties

Latent Heat of Fusion, J/g 640
400
Maximum Temperature: Mechanical, °C 170
310
Melting Completion (Liquidus), °C 650
1610
Melting Onset (Solidus), °C 560
1560
Specific Heat Capacity, J/kg-K 880
540
Thermal Conductivity, W/m-K 130
5.5
Thermal Expansion, µm/m-K 18
9.4

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 24 to 25
1.1
Electrical Conductivity: Equal Weight (Specific), % IACS 79 to 83
2.1

Otherwise Unclassified Properties

Base Metal Price, % relative 11
40
Density, g/cm3 2.7
4.8
Embodied Carbon, kg CO2/kg material 7.3
29
Embodied Energy, MJ/kg 130
470
Embodied Water, L/kg 950
200

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 2.7 to 2.9
89 to 99
Stiffness to Weight: Axial, points 15
13
Stiffness to Weight: Bending, points 52
34
Strength to Weight: Axial, points 28 to 30
66 to 79
Strength to Weight: Bending, points 35 to 36
50 to 57
Thermal Diffusivity, mm2/s 56
2.1
Thermal Shock Resistance, points 14 to 15
75 to 90

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Aluminum (Al), % 74.5 to 79.6
5.0 to 6.0
Carbon (C), % 0
0 to 0.050
Copper (Cu), % 4.0 to 5.0
0.35 to 1.0
Hydrogen (H), % 0
0 to 0.015
Iron (Fe), % 0 to 1.3
0.35 to 1.0
Magnesium (Mg), % 0.45 to 0.65
0
Manganese (Mn), % 0 to 0.1
0
Molybdenum (Mo), % 0
5.0 to 6.0
Nitrogen (N), % 0
0 to 0.040
Oxygen (O), % 0
0 to 0.2
Silicon (Si), % 16 to 18
0
Tin (Sn), % 0
1.5 to 2.5
Titanium (Ti), % 0 to 0.2
82.8 to 87.8
Zinc (Zn), % 0 to 0.1
0
Residuals, % 0 to 0.2
0 to 0.4