MakeItFrom.com
Menu (ESC)

392.0 Aluminum vs. AWS E70C-B2L

392.0 aluminum belongs to the aluminum alloys classification, while AWS E70C-B2L belongs to the iron alloys. There are 27 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 392.0 aluminum and the bottom bar is AWS E70C-B2L.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 75
190
Elongation at Break, % 0.86
21
Poisson's Ratio 0.33
0.29
Shear Modulus, GPa 28
73
Tensile Strength: Ultimate (UTS), MPa 290
580
Tensile Strength: Yield (Proof), MPa 270
460

Thermal Properties

Latent Heat of Fusion, J/g 670
260
Melting Completion (Liquidus), °C 670
1460
Melting Onset (Solidus), °C 580
1420
Specific Heat Capacity, J/kg-K 900
470
Thermal Conductivity, W/m-K 130
39
Thermal Expansion, µm/m-K 19
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 25
7.5
Electrical Conductivity: Equal Weight (Specific), % IACS 90
8.6

Otherwise Unclassified Properties

Base Metal Price, % relative 10
3.0
Density, g/cm3 2.5
7.8
Embodied Carbon, kg CO2/kg material 7.5
1.6
Embodied Energy, MJ/kg 140
22
Embodied Water, L/kg 950
54

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 2.4
110
Resilience: Unit (Modulus of Resilience), kJ/m3 490
550
Stiffness to Weight: Axial, points 17
13
Stiffness to Weight: Bending, points 56
24
Strength to Weight: Axial, points 32
20
Strength to Weight: Bending, points 39
20
Thermal Diffusivity, mm2/s 60
11
Thermal Shock Resistance, points 15
17

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Aluminum (Al), % 73.9 to 80.6
0
Carbon (C), % 0
0 to 0.050
Chromium (Cr), % 0
1.0 to 1.5
Copper (Cu), % 0.4 to 0.8
0 to 0.35
Iron (Fe), % 0 to 1.5
95.1 to 98
Magnesium (Mg), % 0.8 to 1.2
0
Manganese (Mn), % 0.2 to 0.6
0.4 to 1.0
Molybdenum (Mo), % 0
0.4 to 0.65
Nickel (Ni), % 0 to 0.5
0 to 0.2
Phosphorus (P), % 0
0 to 0.025
Silicon (Si), % 18 to 20
0.25 to 0.6
Sulfur (S), % 0
0 to 0.030
Tin (Sn), % 0 to 0.3
0
Titanium (Ti), % 0 to 0.2
0
Vanadium (V), % 0
0 to 0.030
Zinc (Zn), % 0 to 0.5
0
Residuals, % 0 to 0.5
0 to 0.5