MakeItFrom.com
Menu (ESC)

392.0 Aluminum vs. EN AC-46300 Aluminum

Both 392.0 aluminum and EN AC-46300 aluminum are aluminum alloys. Both are furnished in the as-fabricated (no temper or treatment) condition. They have 87% of their average alloy composition in common. There are 29 material properties with values for both materials. Properties with values for just one material (1, in this case) are not shown.

For each property being compared, the top bar is 392.0 aluminum and the bottom bar is EN AC-46300 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 75
73
Elongation at Break, % 0.86
1.1
Fatigue Strength, MPa 190
79
Poisson's Ratio 0.33
0.33
Shear Modulus, GPa 28
27
Tensile Strength: Ultimate (UTS), MPa 290
200
Tensile Strength: Yield (Proof), MPa 270
110

Thermal Properties

Latent Heat of Fusion, J/g 670
490
Maximum Temperature: Mechanical, °C 170
170
Melting Completion (Liquidus), °C 670
630
Melting Onset (Solidus), °C 580
530
Specific Heat Capacity, J/kg-K 900
880
Thermal Conductivity, W/m-K 130
120
Thermal Expansion, µm/m-K 19
22

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 25
27
Electrical Conductivity: Equal Weight (Specific), % IACS 90
84

Otherwise Unclassified Properties

Base Metal Price, % relative 10
10
Density, g/cm3 2.5
2.9
Embodied Carbon, kg CO2/kg material 7.5
7.7
Embodied Energy, MJ/kg 140
140
Embodied Water, L/kg 950
1060

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 2.4
1.9
Resilience: Unit (Modulus of Resilience), kJ/m3 490
89
Stiffness to Weight: Axial, points 17
14
Stiffness to Weight: Bending, points 56
49
Strength to Weight: Axial, points 32
20
Strength to Weight: Bending, points 39
27
Thermal Diffusivity, mm2/s 60
47
Thermal Shock Resistance, points 15
9.1

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Aluminum (Al), % 73.9 to 80.6
84 to 90
Copper (Cu), % 0.4 to 0.8
3.0 to 4.0
Iron (Fe), % 0 to 1.5
0 to 0.8
Lead (Pb), % 0
0 to 0.15
Magnesium (Mg), % 0.8 to 1.2
0.3 to 0.6
Manganese (Mn), % 0.2 to 0.6
0.2 to 0.65
Nickel (Ni), % 0 to 0.5
0 to 0.3
Silicon (Si), % 18 to 20
6.5 to 8.0
Tin (Sn), % 0 to 0.3
0 to 0.1
Titanium (Ti), % 0 to 0.2
0 to 0.25
Zinc (Zn), % 0 to 0.5
0 to 0.65
Residuals, % 0 to 0.5
0 to 0.55