MakeItFrom.com
Menu (ESC)

4004 Aluminum vs. 1200 Aluminum

Both 4004 aluminum and 1200 aluminum are aluminum alloys. They have 89% of their average alloy composition in common. There are 30 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown.

For each property being compared, the top bar is 4004 aluminum and the bottom bar is 1200 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 71
69
Elongation at Break, % 2.4
1.1 to 28
Fatigue Strength, MPa 42
25 to 69
Poisson's Ratio 0.33
0.33
Shear Modulus, GPa 27
26
Shear Strength, MPa 63
54 to 100
Tensile Strength: Ultimate (UTS), MPa 110
85 to 180
Tensile Strength: Yield (Proof), MPa 60
28 to 160

Thermal Properties

Latent Heat of Fusion, J/g 540
400
Maximum Temperature: Mechanical, °C 160
170
Melting Completion (Liquidus), °C 600
660
Melting Onset (Solidus), °C 560
650
Specific Heat Capacity, J/kg-K 910
900
Thermal Conductivity, W/m-K 130
230
Thermal Expansion, µm/m-K 22
23

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 33
58
Electrical Conductivity: Equal Weight (Specific), % IACS 120
190

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
9.0
Density, g/cm3 2.6
2.7
Embodied Carbon, kg CO2/kg material 8.0
8.2
Embodied Energy, MJ/kg 150
150
Embodied Water, L/kg 1070
1190

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 2.3
2.0 to 19
Resilience: Unit (Modulus of Resilience), kJ/m3 25
5.7 to 180
Stiffness to Weight: Axial, points 15
14
Stiffness to Weight: Bending, points 54
50
Strength to Weight: Axial, points 12
8.7 to 19
Strength to Weight: Bending, points 20
16 to 26
Thermal Diffusivity, mm2/s 58
92
Thermal Shock Resistance, points 5.1
3.8 to 8.1

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Aluminum (Al), % 86 to 90
99 to 100
Copper (Cu), % 0 to 0.25
0 to 0.050
Iron (Fe), % 0 to 0.8
0 to 1.0
Magnesium (Mg), % 1.0 to 2.0
0
Manganese (Mn), % 0 to 0.1
0 to 0.050
Silicon (Si), % 9.0 to 10.5
0 to 1.0
Titanium (Ti), % 0
0 to 0.050
Zinc (Zn), % 0 to 0.2
0 to 0.1
Residuals, % 0 to 0.15
0 to 0.15