MakeItFrom.com
Menu (ESC)

4004 Aluminum vs. 6005 Aluminum

Both 4004 aluminum and 6005 aluminum are aluminum alloys. They have 90% of their average alloy composition in common. There are 30 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown.

For each property being compared, the top bar is 4004 aluminum and the bottom bar is 6005 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 71
68
Elongation at Break, % 2.4
9.5 to 17
Fatigue Strength, MPa 42
55 to 95
Poisson's Ratio 0.33
0.33
Shear Modulus, GPa 27
26
Shear Strength, MPa 63
120 to 210
Tensile Strength: Ultimate (UTS), MPa 110
190 to 310
Tensile Strength: Yield (Proof), MPa 60
100 to 280

Thermal Properties

Latent Heat of Fusion, J/g 540
410
Maximum Temperature: Mechanical, °C 160
160
Melting Completion (Liquidus), °C 600
650
Melting Onset (Solidus), °C 560
610
Specific Heat Capacity, J/kg-K 910
900
Thermal Conductivity, W/m-K 130
180 to 200
Thermal Expansion, µm/m-K 22
23

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 33
54
Electrical Conductivity: Equal Weight (Specific), % IACS 120
180

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
9.5
Density, g/cm3 2.6
2.7
Embodied Carbon, kg CO2/kg material 8.0
8.3
Embodied Energy, MJ/kg 150
150
Embodied Water, L/kg 1070
1180

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 2.3
27 to 36
Resilience: Unit (Modulus of Resilience), kJ/m3 25
77 to 550
Stiffness to Weight: Axial, points 15
14
Stiffness to Weight: Bending, points 54
51
Strength to Weight: Axial, points 12
20 to 32
Strength to Weight: Bending, points 20
28 to 38
Thermal Diffusivity, mm2/s 58
74 to 83
Thermal Shock Resistance, points 5.1
8.6 to 14

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Aluminum (Al), % 86 to 90
97.5 to 99
Chromium (Cr), % 0
0 to 0.1
Copper (Cu), % 0 to 0.25
0 to 0.1
Iron (Fe), % 0 to 0.8
0 to 0.35
Magnesium (Mg), % 1.0 to 2.0
0.4 to 0.6
Manganese (Mn), % 0 to 0.1
0 to 0.1
Silicon (Si), % 9.0 to 10.5
0.6 to 0.9
Titanium (Ti), % 0
0 to 0.1
Zinc (Zn), % 0 to 0.2
0 to 0.1
Residuals, % 0 to 0.15
0 to 0.15