MakeItFrom.com
Menu (ESC)

4004 Aluminum vs. 6018 Aluminum

Both 4004 aluminum and 6018 aluminum are aluminum alloys. They have a moderately high 90% of their average alloy composition in common. There are 30 material properties with values for both materials. Properties with values for just one material (1, in this case) are not shown.

For each property being compared, the top bar is 4004 aluminum and the bottom bar is 6018 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 71
69
Elongation at Break, % 2.4
9.0 to 9.1
Fatigue Strength, MPa 42
85 to 89
Poisson's Ratio 0.33
0.33
Shear Modulus, GPa 27
26
Shear Strength, MPa 63
170 to 180
Tensile Strength: Ultimate (UTS), MPa 110
290 to 300
Tensile Strength: Yield (Proof), MPa 60
220 to 230

Thermal Properties

Latent Heat of Fusion, J/g 540
400
Maximum Temperature: Mechanical, °C 160
160
Melting Completion (Liquidus), °C 600
640
Melting Onset (Solidus), °C 560
570
Specific Heat Capacity, J/kg-K 910
890
Thermal Conductivity, W/m-K 130
170
Thermal Expansion, µm/m-K 22
23

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 33
44
Electrical Conductivity: Equal Weight (Specific), % IACS 120
140

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
10
Density, g/cm3 2.6
2.9
Embodied Carbon, kg CO2/kg material 8.0
8.2
Embodied Energy, MJ/kg 150
150
Embodied Water, L/kg 1070
1180

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 2.3
24 to 25
Resilience: Unit (Modulus of Resilience), kJ/m3 25
360 to 380
Stiffness to Weight: Axial, points 15
13
Stiffness to Weight: Bending, points 54
48
Strength to Weight: Axial, points 12
28 to 29
Strength to Weight: Bending, points 20
34 to 35
Thermal Diffusivity, mm2/s 58
65
Thermal Shock Resistance, points 5.1
13

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Aluminum (Al), % 86 to 90
93.1 to 97.8
Bismuth (Bi), % 0
0.4 to 0.7
Chromium (Cr), % 0
0 to 0.1
Copper (Cu), % 0 to 0.25
0.15 to 0.4
Iron (Fe), % 0 to 0.8
0 to 0.7
Lead (Pb), % 0
0.4 to 1.2
Magnesium (Mg), % 1.0 to 2.0
0.6 to 1.2
Manganese (Mn), % 0 to 0.1
0.3 to 0.8
Silicon (Si), % 9.0 to 10.5
0.5 to 1.2
Titanium (Ti), % 0
0 to 0.2
Zinc (Zn), % 0 to 0.2
0 to 0.3
Residuals, % 0 to 0.15
0 to 0.15