MakeItFrom.com
Menu (ESC)

4004 Aluminum vs. 6063 Aluminum

Both 4004 aluminum and 6063 aluminum are aluminum alloys. They have 89% of their average alloy composition in common. There are 30 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown.

For each property being compared, the top bar is 4004 aluminum and the bottom bar is 6063 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 71
68
Elongation at Break, % 2.4
7.3 to 21
Fatigue Strength, MPa 42
39 to 95
Poisson's Ratio 0.33
0.33
Shear Modulus, GPa 27
26
Shear Strength, MPa 63
70 to 190
Tensile Strength: Ultimate (UTS), MPa 110
110 to 300
Tensile Strength: Yield (Proof), MPa 60
49 to 270

Thermal Properties

Latent Heat of Fusion, J/g 540
400
Maximum Temperature: Mechanical, °C 160
160
Melting Completion (Liquidus), °C 600
650
Melting Onset (Solidus), °C 560
620
Specific Heat Capacity, J/kg-K 910
900
Thermal Conductivity, W/m-K 130
190 to 220
Thermal Expansion, µm/m-K 22
23

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 33
49 to 58
Electrical Conductivity: Equal Weight (Specific), % IACS 120
160 to 190

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
9.5
Density, g/cm3 2.6
2.7
Embodied Carbon, kg CO2/kg material 8.0
8.3
Embodied Energy, MJ/kg 150
150
Embodied Water, L/kg 1070
1190

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 2.3
13 to 27
Resilience: Unit (Modulus of Resilience), kJ/m3 25
18 to 540
Stiffness to Weight: Axial, points 15
14
Stiffness to Weight: Bending, points 54
50
Strength to Weight: Axial, points 12
11 to 31
Strength to Weight: Bending, points 20
18 to 37
Thermal Diffusivity, mm2/s 58
79 to 89
Thermal Shock Resistance, points 5.1
4.8 to 13

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Aluminum (Al), % 86 to 90
97.5 to 99.4
Chromium (Cr), % 0
0 to 0.1
Copper (Cu), % 0 to 0.25
0 to 0.1
Iron (Fe), % 0 to 0.8
0 to 0.35
Magnesium (Mg), % 1.0 to 2.0
0.45 to 0.9
Manganese (Mn), % 0 to 0.1
0 to 0.1
Silicon (Si), % 9.0 to 10.5
0.2 to 0.6
Titanium (Ti), % 0
0 to 0.1
Zinc (Zn), % 0 to 0.2
0 to 0.1
Residuals, % 0 to 0.15
0 to 0.15