MakeItFrom.com
Menu (ESC)

4004 Aluminum vs. Grade 20 Titanium

4004 aluminum belongs to the aluminum alloys classification, while grade 20 titanium belongs to the titanium alloys. There are 25 material properties with values for both materials. Properties with values for just one material (7, in this case) are not shown.

For each property being compared, the top bar is 4004 aluminum and the bottom bar is grade 20 titanium.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 71
120
Elongation at Break, % 2.4
5.7 to 17
Fatigue Strength, MPa 42
550 to 630
Poisson's Ratio 0.33
0.32
Shear Modulus, GPa 27
47
Shear Strength, MPa 63
560 to 740
Tensile Strength: Ultimate (UTS), MPa 110
900 to 1270
Tensile Strength: Yield (Proof), MPa 60
850 to 1190

Thermal Properties

Latent Heat of Fusion, J/g 540
400
Maximum Temperature: Mechanical, °C 160
370
Melting Completion (Liquidus), °C 600
1660
Melting Onset (Solidus), °C 560
1600
Specific Heat Capacity, J/kg-K 910
520
Thermal Expansion, µm/m-K 22
9.6

Otherwise Unclassified Properties

Density, g/cm3 2.6
5.0
Embodied Carbon, kg CO2/kg material 8.0
52
Embodied Energy, MJ/kg 150
860
Embodied Water, L/kg 1070
350

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 2.3
71 to 150
Resilience: Unit (Modulus of Resilience), kJ/m3 25
2940 to 5760
Stiffness to Weight: Axial, points 15
14
Stiffness to Weight: Bending, points 54
33
Strength to Weight: Axial, points 12
50 to 70
Strength to Weight: Bending, points 20
41 to 52
Thermal Shock Resistance, points 5.1
55 to 77

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Aluminum (Al), % 86 to 90
3.0 to 4.0
Carbon (C), % 0
0 to 0.050
Chromium (Cr), % 0
5.5 to 6.5
Copper (Cu), % 0 to 0.25
0
Hydrogen (H), % 0
0 to 0.020
Iron (Fe), % 0 to 0.8
0 to 0.3
Magnesium (Mg), % 1.0 to 2.0
0
Manganese (Mn), % 0 to 0.1
0
Molybdenum (Mo), % 0
3.5 to 4.5
Nitrogen (N), % 0
0 to 0.030
Oxygen (O), % 0
0 to 0.12
Palladium (Pd), % 0
0.040 to 0.080
Silicon (Si), % 9.0 to 10.5
0
Titanium (Ti), % 0
71 to 77
Vanadium (V), % 0
7.5 to 8.5
Zinc (Zn), % 0 to 0.2
0
Zirconium (Zr), % 0
3.5 to 4.5
Residuals, % 0 to 0.15
0 to 0.4