MakeItFrom.com
Menu (ESC)

4004 Aluminum vs. N06110 Nickel

4004 aluminum belongs to the aluminum alloys classification, while N06110 nickel belongs to the nickel alloys. There are 26 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 4004 aluminum and the bottom bar is N06110 nickel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 71
210
Elongation at Break, % 2.4
53
Fatigue Strength, MPa 42
320
Poisson's Ratio 0.33
0.28
Shear Modulus, GPa 27
84
Shear Strength, MPa 63
530
Tensile Strength: Ultimate (UTS), MPa 110
730
Tensile Strength: Yield (Proof), MPa 60
330

Thermal Properties

Latent Heat of Fusion, J/g 540
340
Maximum Temperature: Mechanical, °C 160
1020
Melting Completion (Liquidus), °C 600
1490
Melting Onset (Solidus), °C 560
1440
Specific Heat Capacity, J/kg-K 910
440
Thermal Expansion, µm/m-K 22
12

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
65
Density, g/cm3 2.6
8.6
Embodied Carbon, kg CO2/kg material 8.0
11
Embodied Energy, MJ/kg 150
160
Embodied Water, L/kg 1070
320

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 2.3
320
Resilience: Unit (Modulus of Resilience), kJ/m3 25
260
Stiffness to Weight: Axial, points 15
14
Stiffness to Weight: Bending, points 54
23
Strength to Weight: Axial, points 12
23
Strength to Weight: Bending, points 20
21
Thermal Shock Resistance, points 5.1
20

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Aluminum (Al), % 86 to 90
0 to 1.0
Carbon (C), % 0
0 to 0.15
Chromium (Cr), % 0
28 to 33
Copper (Cu), % 0 to 0.25
0 to 0.5
Iron (Fe), % 0 to 0.8
0 to 1.0
Magnesium (Mg), % 1.0 to 2.0
0
Manganese (Mn), % 0 to 0.1
0 to 1.0
Molybdenum (Mo), % 0
9.0 to 12
Nickel (Ni), % 0
51 to 62
Niobium (Nb), % 0
0 to 1.0
Phosphorus (P), % 0
0 to 0.5
Silicon (Si), % 9.0 to 10.5
0 to 1.0
Sulfur (S), % 0
0 to 0.015
Titanium (Ti), % 0
0 to 1.0
Tungsten (W), % 0
1.0 to 4.0
Zinc (Zn), % 0 to 0.2
0
Residuals, % 0 to 0.15
0