MakeItFrom.com
Menu (ESC)

4004 Aluminum vs. N10001 Nickel

4004 aluminum belongs to the aluminum alloys classification, while N10001 nickel belongs to the nickel alloys. There are 26 material properties with values for both materials. Properties with values for just one material (6, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 4004 aluminum and the bottom bar is N10001 nickel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 71
220
Elongation at Break, % 2.4
45
Fatigue Strength, MPa 42
300
Poisson's Ratio 0.33
0.31
Shear Modulus, GPa 27
84
Shear Strength, MPa 63
550
Tensile Strength: Ultimate (UTS), MPa 110
780
Tensile Strength: Yield (Proof), MPa 60
350

Thermal Properties

Latent Heat of Fusion, J/g 540
320
Maximum Temperature: Mechanical, °C 160
900
Melting Completion (Liquidus), °C 600
1620
Melting Onset (Solidus), °C 560
1570
Specific Heat Capacity, J/kg-K 910
390
Thermal Expansion, µm/m-K 22
10

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
75
Density, g/cm3 2.6
9.2
Embodied Carbon, kg CO2/kg material 8.0
15
Embodied Energy, MJ/kg 150
200
Embodied Water, L/kg 1070
260

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 2.3
290
Resilience: Unit (Modulus of Resilience), kJ/m3 25
280
Stiffness to Weight: Axial, points 15
13
Stiffness to Weight: Bending, points 54
22
Strength to Weight: Axial, points 12
24
Strength to Weight: Bending, points 20
21
Thermal Shock Resistance, points 5.1
25

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Aluminum (Al), % 86 to 90
0
Carbon (C), % 0
0 to 0.050
Chromium (Cr), % 0
0 to 1.0
Cobalt (Co), % 0
0 to 2.5
Copper (Cu), % 0 to 0.25
0
Iron (Fe), % 0 to 0.8
4.0 to 6.0
Magnesium (Mg), % 1.0 to 2.0
0
Manganese (Mn), % 0 to 0.1
0 to 1.0
Molybdenum (Mo), % 0
26 to 30
Nickel (Ni), % 0
58 to 69.8
Phosphorus (P), % 0
0 to 0.040
Silicon (Si), % 9.0 to 10.5
0 to 1.0
Sulfur (S), % 0
0 to 0.030
Vanadium (V), % 0
0.2 to 0.4
Zinc (Zn), % 0 to 0.2
0
Residuals, % 0 to 0.15
0