MakeItFrom.com
Menu (ESC)

4004 Aluminum vs. N10629 Nickel

4004 aluminum belongs to the aluminum alloys classification, while N10629 nickel belongs to the nickel alloys. There are 26 material properties with values for both materials. Properties with values for just one material (6, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 4004 aluminum and the bottom bar is N10629 nickel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 71
220
Elongation at Break, % 2.4
45
Fatigue Strength, MPa 42
340
Poisson's Ratio 0.33
0.31
Shear Modulus, GPa 27
83
Shear Strength, MPa 63
600
Tensile Strength: Ultimate (UTS), MPa 110
860
Tensile Strength: Yield (Proof), MPa 60
400

Thermal Properties

Latent Heat of Fusion, J/g 540
310
Maximum Temperature: Mechanical, °C 160
910
Melting Completion (Liquidus), °C 600
1610
Melting Onset (Solidus), °C 560
1560
Specific Heat Capacity, J/kg-K 910
390
Thermal Expansion, µm/m-K 22
10

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
75
Density, g/cm3 2.6
9.2
Embodied Carbon, kg CO2/kg material 8.0
15
Embodied Energy, MJ/kg 150
190
Embodied Water, L/kg 1070
270

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 2.3
320
Resilience: Unit (Modulus of Resilience), kJ/m3 25
360
Stiffness to Weight: Axial, points 15
13
Stiffness to Weight: Bending, points 54
22
Strength to Weight: Axial, points 12
26
Strength to Weight: Bending, points 20
22
Thermal Shock Resistance, points 5.1
27

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Aluminum (Al), % 86 to 90
0.1 to 0.5
Carbon (C), % 0
0 to 0.010
Chromium (Cr), % 0
0.5 to 1.5
Cobalt (Co), % 0
0 to 2.5
Copper (Cu), % 0 to 0.25
0 to 0.5
Iron (Fe), % 0 to 0.8
1.0 to 6.0
Magnesium (Mg), % 1.0 to 2.0
0
Manganese (Mn), % 0 to 0.1
0 to 1.5
Molybdenum (Mo), % 0
26 to 30
Nickel (Ni), % 0
65 to 72.4
Phosphorus (P), % 0
0 to 0.040
Silicon (Si), % 9.0 to 10.5
0 to 0.050
Sulfur (S), % 0
0 to 0.010
Zinc (Zn), % 0 to 0.2
0
Residuals, % 0 to 0.15
0