MakeItFrom.com
Menu (ESC)

4006 Aluminum vs. 2117 Aluminum

Both 4006 aluminum and 2117 aluminum are aluminum alloys. They have a very high 95% of their average alloy composition in common.

For each property being compared, the top bar is 4006 aluminum and the bottom bar is 2117 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 28 to 45
70
Elastic (Young's, Tensile) Modulus, GPa 69
71
Elongation at Break, % 3.4 to 24
26
Fatigue Strength, MPa 35 to 110
95
Poisson's Ratio 0.33
0.33
Shear Modulus, GPa 26
27
Shear Strength, MPa 70 to 91
200
Tensile Strength: Ultimate (UTS), MPa 110 to 160
300
Tensile Strength: Yield (Proof), MPa 62 to 140
170

Thermal Properties

Latent Heat of Fusion, J/g 410
400
Maximum Temperature: Mechanical, °C 160
220
Melting Completion (Liquidus), °C 640
650
Melting Onset (Solidus), °C 620
550
Specific Heat Capacity, J/kg-K 900
880
Thermal Conductivity, W/m-K 220
150
Thermal Expansion, µm/m-K 23
24

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 56
40
Electrical Conductivity: Equal Weight (Specific), % IACS 180
120

Otherwise Unclassified Properties

Base Metal Price, % relative 9.0
10
Density, g/cm3 2.7
3.0
Embodied Carbon, kg CO2/kg material 8.1
8.2
Embodied Energy, MJ/kg 150
150
Embodied Water, L/kg 1180
1150

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 5.1 to 26
64
Resilience: Unit (Modulus of Resilience), kJ/m3 28 to 130
190
Stiffness to Weight: Axial, points 14
13
Stiffness to Weight: Bending, points 50
47
Strength to Weight: Axial, points 11 to 16
28
Strength to Weight: Bending, points 19 to 24
33
Thermal Diffusivity, mm2/s 89
59
Thermal Shock Resistance, points 4.9 to 7.0
12

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Aluminum (Al), % 97.4 to 98.7
91 to 97.6
Chromium (Cr), % 0 to 0.2
0 to 0.1
Copper (Cu), % 0 to 0.1
2.2 to 4.5
Iron (Fe), % 0.5 to 0.8
0 to 0.7
Magnesium (Mg), % 0 to 0.010
0.2 to 1.0
Manganese (Mn), % 0 to 0.050
0.4 to 1.0
Silicon (Si), % 0.8 to 1.2
0.2 to 0.8
Titanium (Ti), % 0
0 to 0.25
Zinc (Zn), % 0 to 0.050
0 to 0.25
Zirconium (Zr), % 0
0 to 0.25
Residuals, % 0 to 0.15
0 to 0.15