MakeItFrom.com
Menu (ESC)

4006 Aluminum vs. Commercially Pure Zirconium

4006 aluminum belongs to the aluminum alloys classification, while commercially pure zirconium belongs to the otherwise unclassified metals. There are 21 material properties with values for both materials. Properties with values for just one material (10, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 4006 aluminum and the bottom bar is commercially pure zirconium.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 69
98
Elongation at Break, % 3.4 to 24
18
Fatigue Strength, MPa 35 to 110
60
Poisson's Ratio 0.33
0.34
Shear Modulus, GPa 26
36
Tensile Strength: Ultimate (UTS), MPa 110 to 160
430
Tensile Strength: Yield (Proof), MPa 62 to 140
240

Thermal Properties

Latent Heat of Fusion, J/g 410
250
Specific Heat Capacity, J/kg-K 900
270
Thermal Conductivity, W/m-K 220
22
Thermal Expansion, µm/m-K 23
5.5

Otherwise Unclassified Properties

Density, g/cm3 2.7
6.7
Embodied Water, L/kg 1180
450

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 5.1 to 26
65
Resilience: Unit (Modulus of Resilience), kJ/m3 28 to 130
290
Stiffness to Weight: Axial, points 14
8.1
Stiffness to Weight: Bending, points 50
23
Strength to Weight: Axial, points 11 to 16
18
Strength to Weight: Bending, points 19 to 24
19
Thermal Diffusivity, mm2/s 89
12
Thermal Shock Resistance, points 4.9 to 7.0
56

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Aluminum (Al), % 97.4 to 98.7
0
Carbon (C), % 0
0 to 0.050
Chromium (Cr), % 0 to 0.2
0 to 0.2
Copper (Cu), % 0 to 0.1
0
Hafnium (Hf), % 0
0 to 4.5
Hydrogen (H), % 0
0 to 0.0050
Iron (Fe), % 0.5 to 0.8
0 to 0.2
Magnesium (Mg), % 0 to 0.010
0
Manganese (Mn), % 0 to 0.050
0
Nitrogen (N), % 0
0 to 0.025
Oxygen (O), % 0
0 to 0.16
Silicon (Si), % 0.8 to 1.2
0
Zinc (Zn), % 0 to 0.050
0
Zirconium (Zr), % 0
94.7 to 100
Residuals, % 0 to 0.15
0