MakeItFrom.com
Menu (ESC)

4006 Aluminum vs. EN 2.4856 Nickel

4006 aluminum belongs to the aluminum alloys classification, while EN 2.4856 nickel belongs to the nickel alloys. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 4006 aluminum and the bottom bar is EN 2.4856 nickel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 28 to 45
210
Elastic (Young's, Tensile) Modulus, GPa 69
200
Elongation at Break, % 3.4 to 24
28
Fatigue Strength, MPa 35 to 110
280
Poisson's Ratio 0.33
0.29
Shear Modulus, GPa 26
79
Shear Strength, MPa 70 to 91
570
Tensile Strength: Ultimate (UTS), MPa 110 to 160
880
Tensile Strength: Yield (Proof), MPa 62 to 140
430

Thermal Properties

Latent Heat of Fusion, J/g 410
330
Maximum Temperature: Mechanical, °C 160
1000
Melting Completion (Liquidus), °C 640
1480
Melting Onset (Solidus), °C 620
1430
Specific Heat Capacity, J/kg-K 900
440
Thermal Conductivity, W/m-K 220
10
Thermal Expansion, µm/m-K 23
11

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 56
1.3
Electrical Conductivity: Equal Weight (Specific), % IACS 180
1.4

Otherwise Unclassified Properties

Base Metal Price, % relative 9.0
80
Density, g/cm3 2.7
8.6
Embodied Carbon, kg CO2/kg material 8.1
14
Embodied Energy, MJ/kg 150
190
Embodied Water, L/kg 1180
290

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 5.1 to 26
200
Resilience: Unit (Modulus of Resilience), kJ/m3 28 to 130
440
Stiffness to Weight: Axial, points 14
13
Stiffness to Weight: Bending, points 50
23
Strength to Weight: Axial, points 11 to 16
28
Strength to Weight: Bending, points 19 to 24
24
Thermal Diffusivity, mm2/s 89
2.7
Thermal Shock Resistance, points 4.9 to 7.0
29

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Aluminum (Al), % 97.4 to 98.7
0 to 0.4
Carbon (C), % 0
0.030 to 0.1
Chromium (Cr), % 0 to 0.2
20 to 23
Cobalt (Co), % 0
0 to 1.0
Copper (Cu), % 0 to 0.1
0 to 0.5
Iron (Fe), % 0.5 to 0.8
0 to 5.0
Magnesium (Mg), % 0 to 0.010
0
Manganese (Mn), % 0 to 0.050
0 to 0.5
Molybdenum (Mo), % 0
8.0 to 10
Nickel (Ni), % 0
58 to 68.8
Niobium (Nb), % 0
3.2 to 4.2
Phosphorus (P), % 0
0 to 0.020
Silicon (Si), % 0.8 to 1.2
0 to 0.5
Sulfur (S), % 0
0 to 0.015
Titanium (Ti), % 0
0 to 0.4
Zinc (Zn), % 0 to 0.050
0
Residuals, % 0 to 0.15
0