MakeItFrom.com
Menu (ESC)

4006 Aluminum vs. EN AC-42100 Aluminum

Both 4006 aluminum and EN AC-42100 aluminum are aluminum alloys. They have a moderately high 94% of their average alloy composition in common. There are 30 material properties with values for both materials. Properties with values for just one material (1, in this case) are not shown.

For each property being compared, the top bar is 4006 aluminum and the bottom bar is EN AC-42100 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 28 to 45
91
Elastic (Young's, Tensile) Modulus, GPa 69
70
Elongation at Break, % 3.4 to 24
3.4 to 9.0
Fatigue Strength, MPa 35 to 110
76 to 82
Poisson's Ratio 0.33
0.33
Shear Modulus, GPa 26
26
Tensile Strength: Ultimate (UTS), MPa 110 to 160
280 to 290
Tensile Strength: Yield (Proof), MPa 62 to 140
210 to 230

Thermal Properties

Latent Heat of Fusion, J/g 410
500
Maximum Temperature: Mechanical, °C 160
170
Melting Completion (Liquidus), °C 640
610
Melting Onset (Solidus), °C 620
600
Specific Heat Capacity, J/kg-K 900
910
Thermal Conductivity, W/m-K 220
150
Thermal Expansion, µm/m-K 23
22

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 56
41
Electrical Conductivity: Equal Weight (Specific), % IACS 180
140

Otherwise Unclassified Properties

Base Metal Price, % relative 9.0
9.5
Density, g/cm3 2.7
2.6
Embodied Carbon, kg CO2/kg material 8.1
8.0
Embodied Energy, MJ/kg 150
150
Embodied Water, L/kg 1180
1110

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 5.1 to 26
9.1 to 23
Resilience: Unit (Modulus of Resilience), kJ/m3 28 to 130
300 to 370
Stiffness to Weight: Axial, points 14
15
Stiffness to Weight: Bending, points 50
53
Strength to Weight: Axial, points 11 to 16
30 to 31
Strength to Weight: Bending, points 19 to 24
37 to 38
Thermal Diffusivity, mm2/s 89
66
Thermal Shock Resistance, points 4.9 to 7.0
13

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Aluminum (Al), % 97.4 to 98.7
91.3 to 93.3
Chromium (Cr), % 0 to 0.2
0
Copper (Cu), % 0 to 0.1
0 to 0.050
Iron (Fe), % 0.5 to 0.8
0 to 0.19
Magnesium (Mg), % 0 to 0.010
0.25 to 0.45
Manganese (Mn), % 0 to 0.050
0 to 0.1
Silicon (Si), % 0.8 to 1.2
6.5 to 7.5
Titanium (Ti), % 0
0 to 0.25
Zinc (Zn), % 0 to 0.050
0 to 0.070
Residuals, % 0 to 0.15
0 to 0.1