MakeItFrom.com
Menu (ESC)

4006 Aluminum vs. EN AC-44000 Aluminum

Both 4006 aluminum and EN AC-44000 aluminum are aluminum alloys. They have 90% of their average alloy composition in common. There are 30 material properties with values for both materials. Properties with values for just one material (1, in this case) are not shown.

For each property being compared, the top bar is 4006 aluminum and the bottom bar is EN AC-44000 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 28 to 45
51
Elastic (Young's, Tensile) Modulus, GPa 69
71
Elongation at Break, % 3.4 to 24
7.3
Fatigue Strength, MPa 35 to 110
64
Poisson's Ratio 0.33
0.33
Shear Modulus, GPa 26
27
Tensile Strength: Ultimate (UTS), MPa 110 to 160
180
Tensile Strength: Yield (Proof), MPa 62 to 140
86

Thermal Properties

Latent Heat of Fusion, J/g 410
560
Maximum Temperature: Mechanical, °C 160
170
Melting Completion (Liquidus), °C 640
590
Melting Onset (Solidus), °C 620
590
Specific Heat Capacity, J/kg-K 900
910
Thermal Conductivity, W/m-K 220
140
Thermal Expansion, µm/m-K 23
21

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 56
36
Electrical Conductivity: Equal Weight (Specific), % IACS 180
130

Otherwise Unclassified Properties

Base Metal Price, % relative 9.0
9.5
Density, g/cm3 2.7
2.5
Embodied Carbon, kg CO2/kg material 8.1
7.8
Embodied Energy, MJ/kg 150
150
Embodied Water, L/kg 1180
1070

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 5.1 to 26
11
Resilience: Unit (Modulus of Resilience), kJ/m3 28 to 130
51
Stiffness to Weight: Axial, points 14
16
Stiffness to Weight: Bending, points 50
55
Strength to Weight: Axial, points 11 to 16
20
Strength to Weight: Bending, points 19 to 24
28
Thermal Diffusivity, mm2/s 89
61
Thermal Shock Resistance, points 4.9 to 7.0
8.4

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Aluminum (Al), % 97.4 to 98.7
87.1 to 90
Chromium (Cr), % 0 to 0.2
0
Copper (Cu), % 0 to 0.1
0 to 0.050
Iron (Fe), % 0.5 to 0.8
0 to 0.19
Magnesium (Mg), % 0 to 0.010
0 to 0.45
Manganese (Mn), % 0 to 0.050
0 to 0.1
Silicon (Si), % 0.8 to 1.2
10 to 11.8
Titanium (Ti), % 0
0 to 0.15
Zinc (Zn), % 0 to 0.050
0 to 0.070
Residuals, % 0 to 0.15
0 to 0.1