MakeItFrom.com
Menu (ESC)

4007 Aluminum vs. 5070 Aluminum

Both 4007 aluminum and 5070 aluminum are aluminum alloys. They have a very high 96% of their average alloy composition in common. There are 30 material properties with values for both materials. Properties with values for just one material (1, in this case) are not shown.

For each property being compared, the top bar is 4007 aluminum and the bottom bar is 5070 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 71
68
Elongation at Break, % 5.1 to 23
20
Fatigue Strength, MPa 46 to 88
150
Poisson's Ratio 0.33
0.33
Shear Modulus, GPa 27
26
Shear Strength, MPa 80 to 90
190
Tensile Strength: Ultimate (UTS), MPa 130 to 160
300
Tensile Strength: Yield (Proof), MPa 50 to 120
140

Thermal Properties

Latent Heat of Fusion, J/g 410
390
Maximum Temperature: Mechanical, °C 170
190
Melting Completion (Liquidus), °C 650
640
Melting Onset (Solidus), °C 590
550
Specific Heat Capacity, J/kg-K 890
900
Thermal Conductivity, W/m-K 170
130
Thermal Expansion, µm/m-K 23
24

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 42
31
Electrical Conductivity: Equal Weight (Specific), % IACS 140
100

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
9.5
Density, g/cm3 2.8
2.7
Embodied Carbon, kg CO2/kg material 8.1
8.8
Embodied Energy, MJ/kg 150
150
Embodied Water, L/kg 1160
1170

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 7.4 to 23
51
Resilience: Unit (Modulus of Resilience), kJ/m3 18 to 110
150
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 49
50
Strength to Weight: Axial, points 12 to 15
31
Strength to Weight: Bending, points 20 to 23
37
Thermal Diffusivity, mm2/s 67
53
Thermal Shock Resistance, points 5.5 to 6.7
14

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Aluminum (Al), % 94.1 to 97.6
92.4 to 95.7
Chromium (Cr), % 0.050 to 0.25
0 to 0.3
Cobalt (Co), % 0 to 0.050
0
Copper (Cu), % 0 to 0.2
0 to 0.25
Iron (Fe), % 0.4 to 1.0
0 to 0.4
Magnesium (Mg), % 0 to 0.2
3.5 to 4.5
Manganese (Mn), % 0.8 to 1.5
0.4 to 0.8
Nickel (Ni), % 0.15 to 0.7
0
Silicon (Si), % 1.0 to 1.7
0 to 0.25
Titanium (Ti), % 0 to 0.1
0 to 0.15
Zinc (Zn), % 0 to 0.1
0.4 to 0.8
Residuals, % 0 to 0.15
0 to 0.15