MakeItFrom.com
Menu (ESC)

4007 Aluminum vs. 8090 Aluminum

Both 4007 aluminum and 8090 aluminum are aluminum alloys. They have a very high 96% of their average alloy composition in common. There are 29 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown.

For each property being compared, the top bar is 4007 aluminum and the bottom bar is 8090 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 71
67
Elongation at Break, % 5.1 to 23
3.5 to 13
Fatigue Strength, MPa 46 to 88
91 to 140
Poisson's Ratio 0.33
0.33
Shear Modulus, GPa 27
25
Tensile Strength: Ultimate (UTS), MPa 130 to 160
340 to 490
Tensile Strength: Yield (Proof), MPa 50 to 120
210 to 420

Thermal Properties

Latent Heat of Fusion, J/g 410
400
Maximum Temperature: Mechanical, °C 170
190
Melting Completion (Liquidus), °C 650
660
Melting Onset (Solidus), °C 590
600
Specific Heat Capacity, J/kg-K 890
960
Thermal Conductivity, W/m-K 170
95 to 160
Thermal Expansion, µm/m-K 23
24

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 42
20
Electrical Conductivity: Equal Weight (Specific), % IACS 140
66

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
18
Density, g/cm3 2.8
2.7
Embodied Carbon, kg CO2/kg material 8.1
8.6
Embodied Energy, MJ/kg 150
170
Embodied Water, L/kg 1160
1160

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 7.4 to 23
16 to 41
Resilience: Unit (Modulus of Resilience), kJ/m3 18 to 110
340 to 1330
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 49
50
Strength to Weight: Axial, points 12 to 15
34 to 49
Strength to Weight: Bending, points 20 to 23
39 to 50
Thermal Diffusivity, mm2/s 67
36 to 60
Thermal Shock Resistance, points 5.5 to 6.7
15 to 22

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Aluminum (Al), % 94.1 to 97.6
93 to 98.4
Chromium (Cr), % 0.050 to 0.25
0 to 0.1
Cobalt (Co), % 0 to 0.050
0
Copper (Cu), % 0 to 0.2
1.0 to 1.6
Iron (Fe), % 0.4 to 1.0
0 to 0.3
Lithium (Li), % 0
2.2 to 2.7
Magnesium (Mg), % 0 to 0.2
0.6 to 1.3
Manganese (Mn), % 0.8 to 1.5
0 to 0.1
Nickel (Ni), % 0.15 to 0.7
0
Silicon (Si), % 1.0 to 1.7
0 to 0.2
Titanium (Ti), % 0 to 0.1
0 to 0.1
Zinc (Zn), % 0 to 0.1
0 to 0.25
Zirconium (Zr), % 0
0.040 to 0.16
Residuals, % 0 to 0.15
0 to 0.15