MakeItFrom.com
Menu (ESC)

4007 Aluminum vs. C55180 Copper

4007 aluminum belongs to the aluminum alloys classification, while C55180 copper belongs to the copper alloys. There are 26 material properties with values for both materials. Properties with values for just one material (6, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 4007 aluminum and the bottom bar is C55180 copper.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 71
110
Elongation at Break, % 5.1 to 23
20
Poisson's Ratio 0.33
0.34
Shear Modulus, GPa 27
41
Tensile Strength: Ultimate (UTS), MPa 130 to 160
200
Tensile Strength: Yield (Proof), MPa 50 to 120
100

Thermal Properties

Latent Heat of Fusion, J/g 410
200
Maximum Temperature: Mechanical, °C 170
200
Melting Completion (Liquidus), °C 650
920
Melting Onset (Solidus), °C 590
710
Specific Heat Capacity, J/kg-K 890
400
Thermal Conductivity, W/m-K 170
200
Thermal Expansion, µm/m-K 23
17

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
29
Density, g/cm3 2.8
8.6
Embodied Carbon, kg CO2/kg material 8.1
2.5
Embodied Energy, MJ/kg 150
39
Embodied Water, L/kg 1160
290

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 7.4 to 23
34
Resilience: Unit (Modulus of Resilience), kJ/m3 18 to 110
48
Stiffness to Weight: Axial, points 14
7.1
Stiffness to Weight: Bending, points 49
18
Strength to Weight: Axial, points 12 to 15
6.4
Strength to Weight: Bending, points 20 to 23
8.8
Thermal Diffusivity, mm2/s 67
56
Thermal Shock Resistance, points 5.5 to 6.7
7.9

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Aluminum (Al), % 94.1 to 97.6
0
Chromium (Cr), % 0.050 to 0.25
0
Cobalt (Co), % 0 to 0.050
0
Copper (Cu), % 0 to 0.2
94.7 to 95.2
Iron (Fe), % 0.4 to 1.0
0
Magnesium (Mg), % 0 to 0.2
0
Manganese (Mn), % 0.8 to 1.5
0
Nickel (Ni), % 0.15 to 0.7
0
Phosphorus (P), % 0
4.8 to 5.2
Silicon (Si), % 1.0 to 1.7
0
Titanium (Ti), % 0 to 0.1
0
Zinc (Zn), % 0 to 0.1
0
Residuals, % 0 to 0.15
0 to 0.15