MakeItFrom.com
Menu (ESC)

4015 Aluminum vs. EN AC-42200 Aluminum

Both 4015 aluminum and EN AC-42200 aluminum are aluminum alloys. They have a moderately high 94% of their average alloy composition in common. There are 30 material properties with values for both materials. Properties with values for just one material (1, in this case) are not shown.

For each property being compared, the top bar is 4015 aluminum and the bottom bar is EN AC-42200 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 35 to 70
89 to 100
Elastic (Young's, Tensile) Modulus, GPa 70
70
Elongation at Break, % 1.1 to 23
3.0 to 6.7
Fatigue Strength, MPa 46 to 71
86 to 90
Poisson's Ratio 0.33
0.33
Shear Modulus, GPa 26
26
Tensile Strength: Ultimate (UTS), MPa 130 to 220
320
Tensile Strength: Yield (Proof), MPa 50 to 200
240 to 260

Thermal Properties

Latent Heat of Fusion, J/g 420
500
Maximum Temperature: Mechanical, °C 160
170
Melting Completion (Liquidus), °C 640
610
Melting Onset (Solidus), °C 600
600
Specific Heat Capacity, J/kg-K 900
910
Thermal Conductivity, W/m-K 160
150
Thermal Expansion, µm/m-K 23
22

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 41
40
Electrical Conductivity: Equal Weight (Specific), % IACS 130
140

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
9.5
Density, g/cm3 2.7
2.6
Embodied Carbon, kg CO2/kg material 8.1
8.0
Embodied Energy, MJ/kg 150
150
Embodied Water, L/kg 1160
1110

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 2.4 to 24
9.0 to 20
Resilience: Unit (Modulus of Resilience), kJ/m3 18 to 290
410 to 490
Stiffness to Weight: Axial, points 14
15
Stiffness to Weight: Bending, points 50
53
Strength to Weight: Axial, points 13 to 22
34 to 35
Strength to Weight: Bending, points 21 to 30
40 to 41
Thermal Diffusivity, mm2/s 66
66
Thermal Shock Resistance, points 5.7 to 9.7
15

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Aluminum (Al), % 94.9 to 97.9
91 to 93.1
Copper (Cu), % 0 to 0.2
0 to 0.050
Iron (Fe), % 0 to 0.7
0 to 0.19
Magnesium (Mg), % 0.1 to 0.5
0.45 to 0.7
Manganese (Mn), % 0.6 to 1.2
0 to 0.1
Silicon (Si), % 1.4 to 2.2
6.5 to 7.5
Titanium (Ti), % 0
0 to 0.25
Zinc (Zn), % 0 to 0.2
0 to 0.070
Residuals, % 0 to 0.15
0 to 0.1