MakeItFrom.com
Menu (ESC)

4015 Aluminum vs. Grade 9 Titanium

4015 aluminum belongs to the aluminum alloys classification, while grade 9 titanium belongs to the titanium alloys. There are 30 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown.

For each property being compared, the top bar is 4015 aluminum and the bottom bar is grade 9 titanium.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 70
110
Elongation at Break, % 1.1 to 23
11 to 17
Fatigue Strength, MPa 46 to 71
330 to 480
Poisson's Ratio 0.33
0.32
Shear Modulus, GPa 26
40
Shear Strength, MPa 82 to 120
430 to 580
Tensile Strength: Ultimate (UTS), MPa 130 to 220
700 to 960
Tensile Strength: Yield (Proof), MPa 50 to 200
540 to 830

Thermal Properties

Latent Heat of Fusion, J/g 420
410
Maximum Temperature: Mechanical, °C 160
330
Melting Completion (Liquidus), °C 640
1640
Melting Onset (Solidus), °C 600
1590
Specific Heat Capacity, J/kg-K 900
550
Thermal Conductivity, W/m-K 160
8.1
Thermal Expansion, µm/m-K 23
9.1

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 41
1.4
Electrical Conductivity: Equal Weight (Specific), % IACS 130
2.7

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
37
Density, g/cm3 2.7
4.5
Embodied Carbon, kg CO2/kg material 8.1
36
Embodied Energy, MJ/kg 150
580
Embodied Water, L/kg 1160
150

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 2.4 to 24
89 to 110
Resilience: Unit (Modulus of Resilience), kJ/m3 18 to 290
1380 to 3220
Stiffness to Weight: Axial, points 14
13
Stiffness to Weight: Bending, points 50
35
Strength to Weight: Axial, points 13 to 22
43 to 60
Strength to Weight: Bending, points 21 to 30
39 to 48
Thermal Diffusivity, mm2/s 66
3.3
Thermal Shock Resistance, points 5.7 to 9.7
52 to 71

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Aluminum (Al), % 94.9 to 97.9
2.5 to 3.5
Carbon (C), % 0
0 to 0.080
Copper (Cu), % 0 to 0.2
0
Hydrogen (H), % 0
0 to 0.015
Iron (Fe), % 0 to 0.7
0 to 0.25
Magnesium (Mg), % 0.1 to 0.5
0
Manganese (Mn), % 0.6 to 1.2
0
Nitrogen (N), % 0
0 to 0.030
Oxygen (O), % 0
0 to 0.15
Silicon (Si), % 1.4 to 2.2
0
Titanium (Ti), % 0
92.6 to 95.5
Vanadium (V), % 0
2.0 to 3.0
Zinc (Zn), % 0 to 0.2
0
Residuals, % 0 to 0.15
0 to 0.4

Comparable Variants