MakeItFrom.com
Menu (ESC)

4015-O Aluminum vs. 5182-O Aluminum

Both 4015-O aluminum and 5182-O aluminum are aluminum alloys. Both are furnished in the annealed condition. They have a very high 96% of their average alloy composition in common.

For each property being compared, the top bar is 4015-O aluminum and the bottom bar is 5182-O aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 35
69
Elastic (Young's, Tensile) Modulus, GPa 70
68
Elongation at Break, % 22
12
Fatigue Strength, MPa 57
130
Poisson's Ratio 0.33
0.33
Shear Modulus, GPa 26
25
Shear Strength, MPa 83
170
Tensile Strength: Ultimate (UTS), MPa 130
280
Tensile Strength: Yield (Proof), MPa 51
130

Thermal Properties

Latent Heat of Fusion, J/g 420
390
Maximum Temperature: Mechanical, °C 160
180
Melting Completion (Liquidus), °C 640
640
Melting Onset (Solidus), °C 600
590
Specific Heat Capacity, J/kg-K 900
900
Thermal Conductivity, W/m-K 160
130
Thermal Expansion, µm/m-K 23
24

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 41
28
Electrical Conductivity: Equal Weight (Specific), % IACS 130
94

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
9.5
Density, g/cm3 2.7
2.7
Embodied Carbon, kg CO2/kg material 8.1
8.9
Embodied Energy, MJ/kg 150
150
Embodied Water, L/kg 1160
1180

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 24
28
Resilience: Unit (Modulus of Resilience), kJ/m3 19
120
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 50
51
Strength to Weight: Axial, points 13
29
Strength to Weight: Bending, points 21
36
Thermal Diffusivity, mm2/s 66
53
Thermal Shock Resistance, points 5.8
12

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Aluminum (Al), % 94.9 to 97.9
93.2 to 95.8
Chromium (Cr), % 0
0 to 0.1
Copper (Cu), % 0 to 0.2
0 to 0.15
Iron (Fe), % 0 to 0.7
0 to 0.35
Magnesium (Mg), % 0.1 to 0.5
4.0 to 5.0
Manganese (Mn), % 0.6 to 1.2
0.2 to 0.5
Silicon (Si), % 1.4 to 2.2
0 to 0.2
Titanium (Ti), % 0
0 to 0.1
Zinc (Zn), % 0 to 0.2
0 to 0.25
Residuals, % 0 to 0.15
0 to 0.15