MakeItFrom.com
Menu (ESC)

4015-O Aluminum vs. Annealed SAE-AISI M3 Class 1

4015-O aluminum belongs to the aluminum alloys classification, while annealed SAE-AISI M3 class 1 belongs to the iron alloys. There are 22 material properties with values for both materials. Properties with values for just one material (11, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 4015-O aluminum and the bottom bar is annealed SAE-AISI M3 class 1.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 35
230
Elastic (Young's, Tensile) Modulus, GPa 70
200
Poisson's Ratio 0.33
0.29
Shear Modulus, GPa 26
77
Tensile Strength: Ultimate (UTS), MPa 130
770

Thermal Properties

Latent Heat of Fusion, J/g 420
260
Melting Completion (Liquidus), °C 640
1610
Melting Onset (Solidus), °C 600
1570
Specific Heat Capacity, J/kg-K 900
440
Thermal Conductivity, W/m-K 160
26
Thermal Expansion, µm/m-K 23
12

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
25
Density, g/cm3 2.7
8.3
Embodied Carbon, kg CO2/kg material 8.1
10
Embodied Energy, MJ/kg 150
150
Embodied Water, L/kg 1160
100

Common Calculations

Stiffness to Weight: Axial, points 14
13
Stiffness to Weight: Bending, points 50
23
Strength to Weight: Axial, points 13
26
Strength to Weight: Bending, points 21
22
Thermal Diffusivity, mm2/s 66
7.2
Thermal Shock Resistance, points 5.8
24

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Aluminum (Al), % 94.9 to 97.9
0
Carbon (C), % 0
1.0 to 1.1
Chromium (Cr), % 0
3.8 to 4.5
Copper (Cu), % 0 to 0.2
0 to 0.25
Iron (Fe), % 0 to 0.7
76.9 to 82.9
Magnesium (Mg), % 0.1 to 0.5
0
Manganese (Mn), % 0.6 to 1.2
0.15 to 0.4
Molybdenum (Mo), % 0
4.8 to 6.5
Nickel (Ni), % 0
0 to 0.3
Phosphorus (P), % 0
0 to 0.030
Silicon (Si), % 1.4 to 2.2
0.2 to 0.45
Sulfur (S), % 0
0 to 0.030
Tungsten (W), % 0
5.0 to 6.8
Vanadium (V), % 0
2.3 to 2.8
Zinc (Zn), % 0 to 0.2
0
Residuals, % 0 to 0.15
0