MakeItFrom.com
Menu (ESC)

4032 Aluminum vs. S28200 Stainless Steel

4032 aluminum belongs to the aluminum alloys classification, while S28200 stainless steel belongs to the iron alloys. There are 27 material properties with values for both materials. Properties with values for just one material (7, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 4032 aluminum and the bottom bar is S28200 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 120
260
Elastic (Young's, Tensile) Modulus, GPa 73
200
Elongation at Break, % 6.7
45
Fatigue Strength, MPa 110
430
Poisson's Ratio 0.33
0.28
Shear Modulus, GPa 28
77
Shear Strength, MPa 260
610
Tensile Strength: Ultimate (UTS), MPa 390
870
Tensile Strength: Yield (Proof), MPa 320
460

Thermal Properties

Latent Heat of Fusion, J/g 570
290
Maximum Temperature: Mechanical, °C 180
900
Melting Completion (Liquidus), °C 570
1380
Melting Onset (Solidus), °C 530
1330
Specific Heat Capacity, J/kg-K 900
480
Thermal Expansion, µm/m-K 19
18

Otherwise Unclassified Properties

Base Metal Price, % relative 10
12
Density, g/cm3 2.6
7.6
Embodied Carbon, kg CO2/kg material 7.8
2.8
Embodied Energy, MJ/kg 140
41
Embodied Water, L/kg 1030
160

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 25
330
Resilience: Unit (Modulus of Resilience), kJ/m3 700
540
Stiffness to Weight: Axial, points 15
15
Stiffness to Weight: Bending, points 53
26
Strength to Weight: Axial, points 41
32
Strength to Weight: Bending, points 45
27
Thermal Shock Resistance, points 20
17

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Aluminum (Al), % 81.1 to 87.2
0
Carbon (C), % 0
0 to 0.15
Chromium (Cr), % 0 to 0.1
17 to 19
Copper (Cu), % 0.5 to 1.3
0.75 to 1.3
Iron (Fe), % 0 to 1.0
57.7 to 64.1
Magnesium (Mg), % 0.8 to 1.3
0
Manganese (Mn), % 0
17 to 19
Molybdenum (Mo), % 0
0.75 to 1.3
Nickel (Ni), % 0.5 to 1.3
0
Nitrogen (N), % 0
0.4 to 0.6
Phosphorus (P), % 0
0 to 0.045
Silicon (Si), % 11 to 13.5
0 to 1.0
Sulfur (S), % 0
0 to 0.030
Zinc (Zn), % 0 to 0.25
0
Residuals, % 0 to 0.15
0