MakeItFrom.com
Menu (ESC)

4045 Aluminum vs. 7129 Aluminum

Both 4045 aluminum and 7129 Aluminum are aluminum alloys. They have 90% of their average alloy composition in common. There are 30 material properties with values for both materials. Properties with values for just one material (1, in this case) are not shown.

For each property being compared, the top bar is 4045 aluminum and the bottom bar is 7129 Aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 71
69
Elongation at Break, % 2.3
9.0 to 9.1
Fatigue Strength, MPa 45
150 to 190
Poisson's Ratio 0.33
0.33
Shear Modulus, GPa 27
26
Shear Strength, MPa 69
250 to 260
Tensile Strength: Ultimate (UTS), MPa 120
430
Tensile Strength: Yield (Proof), MPa 64
380 to 390

Thermal Properties

Latent Heat of Fusion, J/g 540
380
Maximum Temperature: Mechanical, °C 160
180
Melting Completion (Liquidus), °C 600
630
Melting Onset (Solidus), °C 580
510
Specific Heat Capacity, J/kg-K 900
880
Thermal Conductivity, W/m-K 170
150
Thermal Expansion, µm/m-K 21
24

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 45
40
Electrical Conductivity: Equal Weight (Specific), % IACS 160
120

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
9.5
Density, g/cm3 2.6
2.9
Embodied Carbon, kg CO2/kg material 7.8
8.3
Embodied Energy, MJ/kg 150
150
Embodied Water, L/kg 1070
1150

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 2.4
37 to 38
Resilience: Unit (Modulus of Resilience), kJ/m3 29
1050 to 1090
Stiffness to Weight: Axial, points 15
13
Stiffness to Weight: Bending, points 54
47
Strength to Weight: Axial, points 13
41
Strength to Weight: Bending, points 21
43 to 44
Thermal Diffusivity, mm2/s 74
58
Thermal Shock Resistance, points 5.7
19

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Aluminum (Al), % 87.4 to 91
91 to 94
Chromium (Cr), % 0
0 to 0.1
Copper (Cu), % 0 to 0.3
0.5 to 0.9
Gallium (Ga), % 0
0 to 0.030
Iron (Fe), % 0 to 0.8
0 to 0.3
Magnesium (Mg), % 0 to 0.050
1.3 to 2.0
Manganese (Mn), % 0 to 0.050
0 to 0.1
Silicon (Si), % 9.0 to 11
0 to 0.15
Titanium (Ti), % 0 to 0.2
0 to 0.050
Vanadium (V), % 0
0 to 0.050
Zinc (Zn), % 0 to 0.1
4.2 to 5.2
Residuals, % 0 to 0.15
0 to 0.15