MakeItFrom.com
Menu (ESC)

4047 Aluminum vs. 6066 Aluminum

Both 4047 aluminum and 6066 aluminum are aluminum alloys. They have 89% of their average alloy composition in common. There are 30 material properties with values for both materials. Properties with values for just one material (1, in this case) are not shown.

For each property being compared, the top bar is 4047 aluminum and the bottom bar is 6066 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 72
70
Elongation at Break, % 3.4
7.8 to 17
Fatigue Strength, MPa 45
94 to 130
Poisson's Ratio 0.33
0.33
Shear Modulus, GPa 27
26
Shear Strength, MPa 69
95 to 240
Tensile Strength: Ultimate (UTS), MPa 120
160 to 400
Tensile Strength: Yield (Proof), MPa 64
93 to 360

Thermal Properties

Latent Heat of Fusion, J/g 570
410
Maximum Temperature: Mechanical, °C 160
170
Melting Completion (Liquidus), °C 580
650
Melting Onset (Solidus), °C 580
560
Specific Heat Capacity, J/kg-K 900
890
Thermal Conductivity, W/m-K 130
150
Thermal Expansion, µm/m-K 21
23

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 33
40
Electrical Conductivity: Equal Weight (Specific), % IACS 120
130

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
9.5
Density, g/cm3 2.5
2.8
Embodied Carbon, kg CO2/kg material 7.7
8.3
Embodied Energy, MJ/kg 140
150
Embodied Water, L/kg 1050
1160

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 3.5
23 to 52
Resilience: Unit (Modulus of Resilience), kJ/m3 28
61 to 920
Stiffness to Weight: Axial, points 16
14
Stiffness to Weight: Bending, points 55
49
Strength to Weight: Axial, points 13
16 to 39
Strength to Weight: Bending, points 21
23 to 43
Thermal Diffusivity, mm2/s 59
61
Thermal Shock Resistance, points 5.6
6.9 to 17

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Aluminum (Al), % 85.3 to 89
93 to 97
Chromium (Cr), % 0
0 to 0.4
Copper (Cu), % 0 to 0.3
0.7 to 1.2
Iron (Fe), % 0 to 0.8
0 to 0.5
Magnesium (Mg), % 0 to 0.1
0.8 to 1.4
Manganese (Mn), % 0 to 0.15
0.6 to 1.1
Silicon (Si), % 11 to 13
0.9 to 1.8
Titanium (Ti), % 0
0 to 0.2
Zinc (Zn), % 0 to 0.2
0 to 0.25
Residuals, % 0 to 0.15
0 to 0.15