MakeItFrom.com
Menu (ESC)

4047 Aluminum vs. EN AC-43300 Aluminum

Both 4047 aluminum and EN AC-43300 aluminum are aluminum alloys. They have a very high 97% of their average alloy composition in common. There are 29 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown.

For each property being compared, the top bar is 4047 aluminum and the bottom bar is EN AC-43300 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 72
71
Elongation at Break, % 3.4
3.4 to 6.7
Fatigue Strength, MPa 45
76 to 77
Poisson's Ratio 0.33
0.33
Shear Modulus, GPa 27
27
Tensile Strength: Ultimate (UTS), MPa 120
280 to 290
Tensile Strength: Yield (Proof), MPa 64
210 to 230

Thermal Properties

Latent Heat of Fusion, J/g 570
540
Maximum Temperature: Mechanical, °C 160
170
Melting Completion (Liquidus), °C 580
600
Melting Onset (Solidus), °C 580
590
Specific Heat Capacity, J/kg-K 900
910
Thermal Conductivity, W/m-K 130
140
Thermal Expansion, µm/m-K 21
22

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 33
40
Electrical Conductivity: Equal Weight (Specific), % IACS 120
140

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
9.5
Density, g/cm3 2.5
2.5
Embodied Carbon, kg CO2/kg material 7.7
7.9
Embodied Energy, MJ/kg 140
150
Embodied Water, L/kg 1050
1080

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 3.5
9.1 to 17
Resilience: Unit (Modulus of Resilience), kJ/m3 28
300 to 370
Stiffness to Weight: Axial, points 16
15
Stiffness to Weight: Bending, points 55
54
Strength to Weight: Axial, points 13
31 to 32
Strength to Weight: Bending, points 21
37 to 38
Thermal Diffusivity, mm2/s 59
59
Thermal Shock Resistance, points 5.6
13 to 14

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Aluminum (Al), % 85.3 to 89
88.9 to 90.8
Copper (Cu), % 0 to 0.3
0 to 0.050
Iron (Fe), % 0 to 0.8
0 to 0.19
Magnesium (Mg), % 0 to 0.1
0.25 to 0.45
Manganese (Mn), % 0 to 0.15
0 to 0.1
Silicon (Si), % 11 to 13
9.0 to 10
Titanium (Ti), % 0
0 to 0.15
Zinc (Zn), % 0 to 0.2
0 to 0.070
Residuals, % 0 to 0.15
0 to 0.1