MakeItFrom.com
Menu (ESC)

4104 Aluminum vs. EN AC-45100 Aluminum

Both 4104 aluminum and EN AC-45100 aluminum are aluminum alloys. They have a moderately high 94% of their average alloy composition in common. There are 29 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown.

For each property being compared, the top bar is 4104 aluminum and the bottom bar is EN AC-45100 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 71
72
Elongation at Break, % 2.4
1.0 to 2.8
Fatigue Strength, MPa 42
82 to 99
Poisson's Ratio 0.33
0.33
Shear Modulus, GPa 27
27
Tensile Strength: Ultimate (UTS), MPa 110
300 to 360
Tensile Strength: Yield (Proof), MPa 60
210 to 320

Thermal Properties

Latent Heat of Fusion, J/g 540
470
Maximum Temperature: Mechanical, °C 160
170
Melting Completion (Liquidus), °C 600
630
Melting Onset (Solidus), °C 560
550
Specific Heat Capacity, J/kg-K 900
890
Thermal Conductivity, W/m-K 130
140
Thermal Expansion, µm/m-K 22
22

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 33
30
Electrical Conductivity: Equal Weight (Specific), % IACS 120
95

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
10
Density, g/cm3 2.6
2.8
Embodied Carbon, kg CO2/kg material 8.0
7.9
Embodied Energy, MJ/kg 150
150
Embodied Water, L/kg 1080
1100

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 2.3
3.5 to 7.6
Resilience: Unit (Modulus of Resilience), kJ/m3 25
290 to 710
Stiffness to Weight: Axial, points 15
14
Stiffness to Weight: Bending, points 54
49
Strength to Weight: Axial, points 12
30 to 35
Strength to Weight: Bending, points 20
35 to 39
Thermal Diffusivity, mm2/s 58
54
Thermal Shock Resistance, points 5.1
14 to 16

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Aluminum (Al), % 85.8 to 90
88 to 92.8
Bismuth (Bi), % 0.020 to 0.2
0
Copper (Cu), % 0 to 0.25
2.6 to 3.6
Iron (Fe), % 0 to 0.8
0 to 0.6
Lead (Pb), % 0
0 to 0.1
Magnesium (Mg), % 1.0 to 2.0
0.15 to 0.45
Manganese (Mn), % 0 to 0.1
0 to 0.55
Nickel (Ni), % 0
0 to 0.1
Silicon (Si), % 9.0 to 10.5
4.5 to 6.0
Tin (Sn), % 0
0 to 0.050
Titanium (Ti), % 0
0 to 0.25
Zinc (Zn), % 0 to 0.2
0 to 0.2
Residuals, % 0 to 0.15
0 to 0.15