MakeItFrom.com
Menu (ESC)

4104 Aluminum vs. C90400 Bronze

4104 aluminum belongs to the aluminum alloys classification, while C90400 bronze belongs to the copper alloys. There are 28 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 4104 aluminum and the bottom bar is C90400 bronze.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 71
110
Elongation at Break, % 2.4
24
Poisson's Ratio 0.33
0.34
Shear Modulus, GPa 27
41
Tensile Strength: Ultimate (UTS), MPa 110
310
Tensile Strength: Yield (Proof), MPa 60
180

Thermal Properties

Latent Heat of Fusion, J/g 540
190
Maximum Temperature: Mechanical, °C 160
170
Melting Completion (Liquidus), °C 600
990
Melting Onset (Solidus), °C 560
850
Specific Heat Capacity, J/kg-K 900
370
Thermal Conductivity, W/m-K 130
75
Thermal Expansion, µm/m-K 22
18

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 33
12
Electrical Conductivity: Equal Weight (Specific), % IACS 120
12

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
34
Density, g/cm3 2.6
8.7
Embodied Carbon, kg CO2/kg material 8.0
3.5
Embodied Energy, MJ/kg 150
56
Embodied Water, L/kg 1080
370

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 2.3
65
Resilience: Unit (Modulus of Resilience), kJ/m3 25
150
Stiffness to Weight: Axial, points 15
7.0
Stiffness to Weight: Bending, points 54
18
Strength to Weight: Axial, points 12
10
Strength to Weight: Bending, points 20
12
Thermal Diffusivity, mm2/s 58
23
Thermal Shock Resistance, points 5.1
11

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Aluminum (Al), % 85.8 to 90
0 to 0.0050
Antimony (Sb), % 0
0 to 0.020
Bismuth (Bi), % 0.020 to 0.2
0
Boron (B), % 0
0 to 0.1
Copper (Cu), % 0 to 0.25
86 to 89
Iron (Fe), % 0 to 0.8
0 to 0.4
Lead (Pb), % 0
0 to 0.090
Magnesium (Mg), % 1.0 to 2.0
0
Manganese (Mn), % 0 to 0.1
0 to 0.010
Nickel (Ni), % 0
0 to 1.0
Phosphorus (P), % 0
0 to 0.050
Silicon (Si), % 9.0 to 10.5
0 to 0.0050
Sulfur (S), % 0
0.1 to 0.65
Tin (Sn), % 0
7.5 to 8.5
Zinc (Zn), % 0 to 0.2
1.0 to 5.0
Zirconium (Zr), % 0
0 to 0.1
Residuals, % 0 to 0.15
0 to 0.7