MakeItFrom.com
Menu (ESC)

4145 Aluminum vs. 242.0 Aluminum

Both 4145 aluminum and 242.0 aluminum are aluminum alloys. They have a moderately high 90% of their average alloy composition in common. There are 30 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown.

For each property being compared, the top bar is 4145 aluminum and the bottom bar is 242.0 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 73
73
Elongation at Break, % 2.2
0.5 to 1.5
Fatigue Strength, MPa 48
55 to 110
Poisson's Ratio 0.33
0.33
Shear Modulus, GPa 28
27
Shear Strength, MPa 69
150 to 240
Tensile Strength: Ultimate (UTS), MPa 120
180 to 290
Tensile Strength: Yield (Proof), MPa 68
120 to 220

Thermal Properties

Latent Heat of Fusion, J/g 540
390
Maximum Temperature: Mechanical, °C 160
210
Melting Completion (Liquidus), °C 590
640
Melting Onset (Solidus), °C 520
530
Specific Heat Capacity, J/kg-K 880
870
Thermal Conductivity, W/m-K 100
130 to 170
Thermal Expansion, µm/m-K 21
22

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 26
33 to 44
Electrical Conductivity: Equal Weight (Specific), % IACS 84
96 to 130

Otherwise Unclassified Properties

Base Metal Price, % relative 10
12
Density, g/cm3 2.8
3.1
Embodied Carbon, kg CO2/kg material 7.6
8.3
Embodied Energy, MJ/kg 140
150
Embodied Water, L/kg 1040
1130

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 2.3
1.3 to 3.4
Resilience: Unit (Modulus of Resilience), kJ/m3 31
110 to 340
Stiffness to Weight: Axial, points 14
13
Stiffness to Weight: Bending, points 50
45
Strength to Weight: Axial, points 12
16 to 26
Strength to Weight: Bending, points 19
23 to 32
Thermal Diffusivity, mm2/s 42
50 to 62
Thermal Shock Resistance, points 5.5
8.0 to 13

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Aluminum (Al), % 83 to 87.4
88.4 to 93.6
Chromium (Cr), % 0 to 0.15
0 to 0.25
Copper (Cu), % 3.3 to 4.7
3.5 to 4.5
Iron (Fe), % 0 to 0.8
0 to 1.0
Magnesium (Mg), % 0 to 0.15
1.2 to 1.8
Manganese (Mn), % 0 to 0.15
0 to 0.35
Nickel (Ni), % 0
1.7 to 2.3
Silicon (Si), % 9.3 to 10.7
0 to 0.7
Titanium (Ti), % 0
0 to 0.25
Zinc (Zn), % 0 to 0.2
0 to 0.35
Residuals, % 0 to 0.15
0 to 0.15