MakeItFrom.com
Menu (ESC)

4145 Aluminum vs. C94800 Bronze

4145 aluminum belongs to the aluminum alloys classification, while C94800 bronze belongs to the copper alloys. There are 28 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 4145 aluminum and the bottom bar is C94800 bronze.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 73
110
Elongation at Break, % 2.2
22
Poisson's Ratio 0.33
0.34
Shear Modulus, GPa 28
43
Tensile Strength: Ultimate (UTS), MPa 120
310
Tensile Strength: Yield (Proof), MPa 68
160

Thermal Properties

Latent Heat of Fusion, J/g 540
200
Maximum Temperature: Mechanical, °C 160
190
Melting Completion (Liquidus), °C 590
1030
Melting Onset (Solidus), °C 520
900
Specific Heat Capacity, J/kg-K 880
380
Thermal Conductivity, W/m-K 100
39
Thermal Expansion, µm/m-K 21
17

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 26
12
Electrical Conductivity: Equal Weight (Specific), % IACS 84
12

Otherwise Unclassified Properties

Base Metal Price, % relative 10
34
Density, g/cm3 2.8
8.8
Embodied Carbon, kg CO2/kg material 7.6
3.5
Embodied Energy, MJ/kg 140
56
Embodied Water, L/kg 1040
350

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 2.3
58
Resilience: Unit (Modulus of Resilience), kJ/m3 31
110
Stiffness to Weight: Axial, points 14
7.2
Stiffness to Weight: Bending, points 50
18
Strength to Weight: Axial, points 12
9.8
Strength to Weight: Bending, points 19
12
Thermal Diffusivity, mm2/s 42
12
Thermal Shock Resistance, points 5.5
11

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Aluminum (Al), % 83 to 87.4
0 to 0.0050
Antimony (Sb), % 0
0 to 0.15
Chromium (Cr), % 0 to 0.15
0
Copper (Cu), % 3.3 to 4.7
84 to 89
Iron (Fe), % 0 to 0.8
0 to 0.25
Lead (Pb), % 0
0.3 to 1.0
Magnesium (Mg), % 0 to 0.15
0
Manganese (Mn), % 0 to 0.15
0 to 0.2
Nickel (Ni), % 0
4.5 to 6.0
Phosphorus (P), % 0
0 to 0.050
Silicon (Si), % 9.3 to 10.7
0 to 0.0050
Sulfur (S), % 0
0 to 0.050
Tin (Sn), % 0
4.5 to 6.0
Zinc (Zn), % 0 to 0.2
1.0 to 2.5
Residuals, % 0 to 0.15
0 to 1.3