MakeItFrom.com
Menu (ESC)

5005 Aluminum vs. Grade Ti-Pd16 Titanium

5005 aluminum belongs to the aluminum alloys classification, while grade Ti-Pd16 titanium belongs to the titanium alloys. There are 29 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown.

For each property being compared, the top bar is 5005 aluminum and the bottom bar is grade Ti-Pd16 titanium.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 28 to 64
180
Elastic (Young's, Tensile) Modulus, GPa 68
110
Elongation at Break, % 1.1 to 23
17
Fatigue Strength, MPa 38 to 86
200
Poisson's Ratio 0.33
0.32
Shear Modulus, GPa 26
40
Tensile Strength: Ultimate (UTS), MPa 110 to 230
390
Tensile Strength: Yield (Proof), MPa 41 to 210
310

Thermal Properties

Latent Heat of Fusion, J/g 400
420
Maximum Temperature: Mechanical, °C 180
320
Melting Completion (Liquidus), °C 650
1660
Melting Onset (Solidus), °C 630
1610
Specific Heat Capacity, J/kg-K 900
540
Thermal Conductivity, W/m-K 200
22
Thermal Expansion, µm/m-K 24
8.7

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 52
3.6
Electrical Conductivity: Equal Weight (Specific), % IACS 170
7.1

Otherwise Unclassified Properties

Density, g/cm3 2.7
4.5
Embodied Carbon, kg CO2/kg material 8.3
36
Embodied Energy, MJ/kg 150
600
Embodied Water, L/kg 1190
230

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 2.3 to 22
62
Resilience: Unit (Modulus of Resilience), kJ/m3 12 to 320
440
Stiffness to Weight: Axial, points 14
13
Stiffness to Weight: Bending, points 50
35
Strength to Weight: Axial, points 11 to 23
24
Strength to Weight: Bending, points 19 to 31
26
Thermal Diffusivity, mm2/s 82
8.9
Thermal Shock Resistance, points 4.9 to 10
30

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Aluminum (Al), % 97 to 99.5
0
Carbon (C), % 0
0 to 0.1
Chromium (Cr), % 0 to 0.1
0
Copper (Cu), % 0 to 0.2
0
Hydrogen (H), % 0
0 to 0.015
Iron (Fe), % 0 to 0.7
0 to 0.3
Magnesium (Mg), % 0.5 to 1.1
0
Manganese (Mn), % 0 to 0.2
0
Nickel (Ni), % 0
0 to 0.030
Oxygen (O), % 0
0 to 0.18
Palladium (Pd), % 0
0.040 to 0.080
Silicon (Si), % 0 to 0.3
0
Titanium (Ti), % 0
98.8 to 99.96
Zinc (Zn), % 0 to 0.25
0
Residuals, % 0 to 0.15
0 to 0.4