MakeItFrom.com
Menu (ESC)

5005-H19 Aluminum vs. 5005A-H19 Aluminum

Both 5005-H19 aluminum and 5005A-H19 aluminum are aluminum alloys. Both are furnished in the H19 temper. Their average alloy composition is basically identical. There are 31 material properties with values for both materials. Properties with values for just one material (1, in this case) are not shown.

For each property being compared, the top bar is 5005-H19 aluminum and the bottom bar is 5005A-H19 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 64
64
Elastic (Young's, Tensile) Modulus, GPa 68
68
Elongation at Break, % 1.1
1.1
Fatigue Strength, MPa 66
65
Poisson's Ratio 0.33
0.33
Shear Modulus, GPa 26
26
Shear Strength, MPa 130
130
Tensile Strength: Ultimate (UTS), MPa 230
230
Tensile Strength: Yield (Proof), MPa 210
210

Thermal Properties

Latent Heat of Fusion, J/g 400
400
Maximum Temperature: Mechanical, °C 180
180
Melting Completion (Liquidus), °C 650
660
Melting Onset (Solidus), °C 630
630
Specific Heat Capacity, J/kg-K 900
900
Thermal Conductivity, W/m-K 200
200
Thermal Expansion, µm/m-K 24
24

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 52
52
Electrical Conductivity: Equal Weight (Specific), % IACS 170
170

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
9.5
Density, g/cm3 2.7
2.7
Embodied Carbon, kg CO2/kg material 8.3
8.3
Embodied Energy, MJ/kg 150
150
Embodied Water, L/kg 1190
1190

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 2.5
2.6
Resilience: Unit (Modulus of Resilience), kJ/m3 320
310
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 50
50
Strength to Weight: Axial, points 23
24
Strength to Weight: Bending, points 31
31
Thermal Diffusivity, mm2/s 82
82
Thermal Shock Resistance, points 10
10

Alloy Composition

Aluminum (Al), % 97 to 99.5
97.5 to 99.3
Chromium (Cr), % 0 to 0.1
0 to 0.1
Copper (Cu), % 0 to 0.2
0 to 0.050
Iron (Fe), % 0 to 0.7
0 to 0.45
Magnesium (Mg), % 0.5 to 1.1
0.7 to 1.1
Manganese (Mn), % 0 to 0.2
0 to 0.15
Silicon (Si), % 0 to 0.3
0 to 0.3
Zinc (Zn), % 0 to 0.25
0 to 0.2
Residuals, % 0
0 to 0.15