MakeItFrom.com
Menu (ESC)

5005A-O Aluminum vs. 7204-O Aluminum

Both 5005A-O aluminum and 7204-O aluminum are aluminum alloys. Both are furnished in the annealed condition. They have a moderately high 94% of their average alloy composition in common. There are 30 material properties with values for both materials. Properties with values for just one material (1, in this case) are not shown.

For each property being compared, the top bar is 5005A-O aluminum and the bottom bar is 7204-O aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 68
70
Elongation at Break, % 19
13
Fatigue Strength, MPa 46
130
Poisson's Ratio 0.33
0.33
Shear Modulus, GPa 26
26
Shear Strength, MPa 75
130
Tensile Strength: Ultimate (UTS), MPa 120
220
Tensile Strength: Yield (Proof), MPa 43
120

Thermal Properties

Latent Heat of Fusion, J/g 400
380
Maximum Temperature: Mechanical, °C 180
210
Melting Completion (Liquidus), °C 660
640
Melting Onset (Solidus), °C 630
520
Specific Heat Capacity, J/kg-K 900
880
Thermal Conductivity, W/m-K 200
150
Thermal Expansion, µm/m-K 24
24

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 52
39
Electrical Conductivity: Equal Weight (Specific), % IACS 170
120

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
9.5
Density, g/cm3 2.7
2.9
Embodied Carbon, kg CO2/kg material 8.3
8.4
Embodied Energy, MJ/kg 150
150
Embodied Water, L/kg 1190
1140

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 18
25
Resilience: Unit (Modulus of Resilience), kJ/m3 14
110
Stiffness to Weight: Axial, points 14
13
Stiffness to Weight: Bending, points 50
47
Strength to Weight: Axial, points 12
21
Strength to Weight: Bending, points 20
28
Thermal Diffusivity, mm2/s 82
58
Thermal Shock Resistance, points 5.3
9.4

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Aluminum (Al), % 97.5 to 99.3
90.5 to 94.8
Chromium (Cr), % 0 to 0.1
0 to 0.3
Copper (Cu), % 0 to 0.050
0 to 0.2
Iron (Fe), % 0 to 0.45
0 to 0.35
Magnesium (Mg), % 0.7 to 1.1
1.0 to 2.0
Manganese (Mn), % 0 to 0.15
0.2 to 0.7
Silicon (Si), % 0 to 0.3
0 to 0.3
Titanium (Ti), % 0
0 to 0.2
Vanadium (V), % 0
0 to 0.1
Zinc (Zn), % 0 to 0.2
4.0 to 5.0
Zirconium (Zr), % 0
0 to 0.25
Residuals, % 0 to 0.15
0 to 0.15