MakeItFrom.com
Menu (ESC)

5019 Aluminum vs. 2117 Aluminum

Both 5019 aluminum and 2117 aluminum are aluminum alloys. They have a very high 95% of their average alloy composition in common. There are 30 material properties with values for both materials. Properties with values for just one material (1, in this case) are not shown.

For each property being compared, the top bar is 5019 aluminum and the bottom bar is 2117 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 68
71
Elongation at Break, % 2.2 to 18
26
Fatigue Strength, MPa 100 to 160
95
Poisson's Ratio 0.33
0.33
Shear Modulus, GPa 26
27
Shear Strength, MPa 170 to 210
200
Tensile Strength: Ultimate (UTS), MPa 280 to 360
300
Tensile Strength: Yield (Proof), MPa 120 to 300
170

Thermal Properties

Latent Heat of Fusion, J/g 400
400
Maximum Temperature: Mechanical, °C 180
220
Melting Completion (Liquidus), °C 640
650
Melting Onset (Solidus), °C 540
550
Specific Heat Capacity, J/kg-K 900
880
Thermal Conductivity, W/m-K 130
150
Thermal Expansion, µm/m-K 24
24

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 29
40
Electrical Conductivity: Equal Weight (Specific), % IACS 98
120

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
10
Density, g/cm3 2.7
3.0
Embodied Carbon, kg CO2/kg material 9.0
8.2
Embodied Energy, MJ/kg 150
150
Embodied Water, L/kg 1180
1150

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 7.6 to 40
64
Resilience: Unit (Modulus of Resilience), kJ/m3 110 to 650
190
Stiffness to Weight: Axial, points 14
13
Stiffness to Weight: Bending, points 51
47
Strength to Weight: Axial, points 29 to 38
28
Strength to Weight: Bending, points 35 to 42
33
Thermal Diffusivity, mm2/s 52
59
Thermal Shock Resistance, points 13 to 16
12

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Aluminum (Al), % 91.5 to 95.3
91 to 97.6
Chromium (Cr), % 0 to 0.2
0 to 0.1
Copper (Cu), % 0 to 0.1
2.2 to 4.5
Iron (Fe), % 0 to 0.5
0 to 0.7
Magnesium (Mg), % 4.5 to 5.6
0.2 to 1.0
Manganese (Mn), % 0.1 to 0.6
0.4 to 1.0
Silicon (Si), % 0 to 0.4
0.2 to 0.8
Titanium (Ti), % 0 to 0.2
0 to 0.25
Zinc (Zn), % 0 to 0.2
0 to 0.25
Zirconium (Zr), % 0
0 to 0.25
Residuals, % 0 to 0.15
0 to 0.15