MakeItFrom.com
Menu (ESC)

5019 Aluminum vs. 6016 Aluminum

Both 5019 aluminum and 6016 aluminum are aluminum alloys. They have a moderately high 95% of their average alloy composition in common. There are 30 material properties with values for both materials. Properties with values for just one material (1, in this case) are not shown.

For each property being compared, the top bar is 5019 aluminum and the bottom bar is 6016 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 68
69
Elongation at Break, % 2.2 to 18
11 to 27
Fatigue Strength, MPa 100 to 160
68 to 89
Poisson's Ratio 0.33
0.33
Shear Modulus, GPa 26
26
Shear Strength, MPa 170 to 210
130 to 170
Tensile Strength: Ultimate (UTS), MPa 280 to 360
200 to 280
Tensile Strength: Yield (Proof), MPa 120 to 300
110 to 210

Thermal Properties

Latent Heat of Fusion, J/g 400
410
Maximum Temperature: Mechanical, °C 180
160
Melting Completion (Liquidus), °C 640
660
Melting Onset (Solidus), °C 540
610
Specific Heat Capacity, J/kg-K 900
900
Thermal Conductivity, W/m-K 130
190 to 210
Thermal Expansion, µm/m-K 24
23

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 29
48 to 54
Electrical Conductivity: Equal Weight (Specific), % IACS 98
160 to 180

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
9.5
Density, g/cm3 2.7
2.7
Embodied Carbon, kg CO2/kg material 9.0
8.2
Embodied Energy, MJ/kg 150
150
Embodied Water, L/kg 1180
1180

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 7.6 to 40
29 to 47
Resilience: Unit (Modulus of Resilience), kJ/m3 110 to 650
82 to 340
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 51
51
Strength to Weight: Axial, points 29 to 38
21 to 29
Strength to Weight: Bending, points 35 to 42
29 to 35
Thermal Diffusivity, mm2/s 52
77 to 86
Thermal Shock Resistance, points 13 to 16
9.1 to 12

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Aluminum (Al), % 91.5 to 95.3
96.4 to 98.8
Chromium (Cr), % 0 to 0.2
0 to 0.1
Copper (Cu), % 0 to 0.1
0 to 0.2
Iron (Fe), % 0 to 0.5
0 to 0.5
Magnesium (Mg), % 4.5 to 5.6
0.25 to 0.6
Manganese (Mn), % 0.1 to 0.6
0 to 0.2
Silicon (Si), % 0 to 0.4
1.0 to 1.5
Titanium (Ti), % 0 to 0.2
0 to 0.15
Zinc (Zn), % 0 to 0.2
0 to 0.2
Residuals, % 0 to 0.15
0 to 0.15